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ABSTRACT

This work introduces a new predictive time-rescaling methodology designed to pro-
vide an asymptotically unbiased goodness-of-fit (Gof) framework for general self-
exciting temporal point processes. Specifically addressing the analysis of single ob-
served trajectories, the proposed approach mitigates the inherent bias introduced
by plugged-in parameter estimates by focusing on forecasting accuracy. Using a
predictive-sequential procedure, model validation is centred on the precision of
forecasted arrival times of events. We demonstrate that these times, when trans-
formed via sequentially estimated parameters, converge in probability to vectors of
iid. exponential random variables with unit mean (Exp(1)) under standard regular-
ity conditions. The framework’s efficacy is validated through numerical simulations
comparing standard and predictive time-rescaling for non-homogeneous Poisson and
Hawkes processes, further supported by an application to Japanese seismic data.
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1. Introduction

Self-exciting temporal point processes (SETPPs) are frequently used to model,
analyse and forecast events’ arrival times in several fields: seismology, neuroscience,
cyber-security, finance, infectious diseases, social networks modelling, criminology, etc.

As it was noted by many authors point process models are getting more complex
but corresponding tools for goodness-of-fit (Gof) assessment “have lagged behind, re-
stricted mostly to the spatial statistics literature” according to [15]. In neuroscience,
where SETPPs are used to analyse spike-train data and infer the coding properties of
neural systems across different brain areas, [13] noted an increasing “need for statisti-
cal modelling and goodness-of-fit tools that can address neural coding problems at the
population level’.

This work studies the use of time-rescaling to assess the Gof of SETPP models. It
first highlights a significant, yet frequently overlooked, limitation in the conventional
application of the time-rescaling theorem: the systematic bias introduced when model
parameters are replaced by their estimates. A predictive time-rescaling methodology
is introduced yielding an asymptotically unbiased goodness-of-fit test for general self-
exciting temporal point processes, contingent upon standard regularity conditions.

Let us assume that a recurrent phenomenon is observed at times 77,75, ... modelled

Contact: M.-A. El-Aroui. Email: Mhamed-Ali.Elaroui@uir.ac.ma and Mhamed.Elaroui@gmail.com



as arrival times of a point process N which counting process is {NV; }+>0 is defined on
a probability space (€2, F, {F¢}+>0,P). The point process N is assumed self-exciting.

It will be assumed here that a single point process (or a single trajectory) is ob-
served. The conditional intensity defines entirely the probability distribution of the
self-exciting process:

. 1
At Fi-) = Alir_ﬂlo EP{Nt-FAt — Ni— = 1|F-}

where F;_ denotes the sigma-algebra defined by the past of the process N before t.
t
The cumulative intensity is A(t|F—) := / Au|Fy—) du. The notations will be simpli-
0
fied below by replacing A(t|F;—) and A(t|F;—) by A(t) and A(?).

The process of events arrivals is modelled using the following parametric formulation
for the conditional intensity:

M={X(.,0); 0O CRF}. (1)

Standard regularity conditions on A(.,0) and A(e, ) := / Au, 0) du (existence and

0
continuity of first and second derivatives wrt 6 as stated for example in [12] or [10])
will be assumed in the following.

This work advances the field by introducing a predictive time-rescaling approach
that compensates for the bias inherent in plug-in parameter estimation. By addressing
these distributional shifts, we provide a more robust framework for SETPP model vali-
dation, specifically improving the reliability of standard tools like Kolmogorov-Smirnov
plots (KS-plots) and Gof tests for M, i.e. statistical tests for the null hypothesis:

Ho: ‘A.) € M vs Hy: M) ¢ M. (2)

Notations —

(1) The studied phenomenon will be observed until n events are recorded.

(2) Let Ty,...,T, denote the first n occurrence times with 7o = 0.

(3) Let Xi,...,X,, denote the first n inter-events times: X; = T; — T;_1 for i =
1,...,n.

(4) Let 6y denote the true value of the unknown parameter 6 under the null hypoth-
esis Hy.

(5) The Kolmogorov-Smirnov distribution is denoted L.

Since the initial work of [9] time-rescaling has been frequently used to assess the
Gof of SETPP models by checking the iid-Expon.(1) assumption of the rescaled arrival
times. This check is usually based on KS-plots or Gof tests (mainly KS or Chi-square).
Generally users of this approach use exponentiality checking tools after replacing the
unknown parameters by their estimates. Nevertheless this plug-in step invalidates the
iid-Expon.(1) property for the rescaled times. The practical effects of this plug-in
step have been most often overlooked by practitioners. In the neuroscience field, [11]
mentioned this problem when predicting neuron spike occurrences and developed an
alternative solution (based on random sub-sampling) in the case of several observed



trajectories.
Three different approaches of time-rescaling will be compared in this paper:

(1) TRO: time-rescaling with the true parameters 6y (unavailable in real life applica-
tions) used in the data-generating process.

(2) TR1:standard time-rescaling with estimated parameters 6, using the whole data-
set.

(3) TR2: predictive time-rescaling with sequentially estimated parameters. This ap-
proach will be introduced in section 3.

The previous procedures of time-rescaling will be analysed through intensive simu-
lations for two families of SETPPs: non-homogeneous Poisson processes (NHPP) and
Hawkes processes. The most used models for NHPP are the power-law process (PLP)
and the log-linear process (LLP). The conditional intensities of these two NHPP write
A(t) = a h(t) where >0 is a scale parameter and h is a baseline hazard rate function
(given by h(t) = Bt8~! for PLP and by h(t) = exp(Bt) for LLP). Hawkes processes (see
for example [7]) are self-exciting point processes which conditional intensities write:
At) = p+ Y54, &t — i), where p is called the background intensity and ¢ is the
triggering function (given by ¢(t) = k/(c+1t)P for Power-law and by ¢(t) = o exp(—/ft)
for exponential decay Hawkes processes).

Section 2 introduces the use of standard time-rescaling to assess the Gof of NHPPs
and Hawkes processes. An alternative unbiased predictive version of time-rescaling
is presented in section 3. This predictive time-rescaling is used to develop KS-plots
and KS Gof tests for SETPPs taking into consideration both the stochastic impact
of parameters’ estimation and models’ predictive accuracy. A numerical analysis of
the predictive time-rescaling approach is presented in section 4. A final discussion is
presented in the last section.

2. Time-rescaling in Gof assessment of SETPPs

The literature provides several Gof tests in the case of multi-trajectory observed
point processes (see for example [1] and [4]). Gof tests based on single observed tra-
jectories are rather scarce (see for example [2] or [8] in the case of NHPPs or for more
general SETPPs: [15] and [14] who developed interesting but rather algorithmically
tedious Gof approaches).

Users of SETPPs generally check their model-Gof using the time-rescaling theorem
with the usual diagnosis tools of the iid-Expon.(1) assumption after replacing the
unknown parameters by their estimates when transforming arrival times. But this
plug-in step invalidates the main result of the time-rescaling theorem and leads to
biased model-checking diagnoses.

Model checking of SETPPs is most frequently based on the following theorem ([9]).

Theorem 2.1. Let 0 < Ty <Th < --- < Tp,_1 < T, <T be the set of event times of
a SETPP observed on a period [0,T]. Define, fori € {1,...,n}, the transformation

T;
AT = /0 A(u) d

Then the A(T;)’s are distributed as the times of the first n events of a Poisson process



with unit rate.

Let E; .= ANT;) — AN(T;-1) forie{l,...,n} (3)

denote the rescaled inter-arrival times are iid-Ezpon.(1) rv’s. O

As mentioned by Brown et al. 2002 [3]|, “The time-rescaling theorem generates a
history-dependent rescaling of the time axis that converts a point process into a Poisson
process with a unit rate”.

Practitioners usually assess the Gof of SETPP models by replacing in Theorem 2.1
the true (but unavailable) rescaled inter-arrival times E; = A(T;) — A(T;—1) by their
estimated counterparts: F; := A(T;,0,) — A(Ty—1,0,) for i € {1,...,n}.

Following [3], two specific diagnosis tools are frequently used to check whether the
estimated rescaled inter-arrival times E; behave like iid-Expon.(1) rv’s:

(1) Kolmogorov-Smirnov (KS) Gof-tests: calculate the following KS-statistic:

K, := v/n max { max <Z — ﬁ(i)> , max <ﬁ(i) S 1) } (4)

1<i<n \ N 1<i<n n
where {ﬁ(i)}lgign are the (increasing) order statistics of the transformed rv’s:
Upi=1—exp(—E;) =1 —exp (— AT}, 0,) + A(Ti-1,6,))  forie{1,...,n}. (5)

The tested model will be rejected when I?n exceeds the appropriate quantile of
Kolmogorov-Smirnov distribution L.

(2) KS-plots or quantile-quantile plots: the quantiles of the Uniform]0,1] distribution
approximated for 7 € {1,...,n} by b; = (i —0.5) /n are plotted against i ;)’s: the
sorted observed values of the transformed rv’s U;. If the model has a good fit,
then the points (ﬁ(i), b;) should lie close to the diagonal line. Confidence bounds
for the degree of agreement between the models and the data may be constructed
using L. For moderate to large sample sizes the 95% (99%) confidence bounds
are well approximated by b; & 1.36/n'/2 (b; + 1.63/n'/?).

Practitioners in several fields assess their models’ Gof by checking the iid-Expon.(1)
property on the estimated rescaled inter-arrival times Ei’s. This Gof procedure sup-
poses that the iid-Expon.(1) property of Theorem 2.1 remains approximately valid
when the estimated parameters 6, are plugged-in. More precisely it assumes that the
iid-Expon.(1) property of the theoretical rescaled inter-arrival times E;’s can be ex-
tended to their estimated counterparts E;’s. Several simulation results (see [6]) show
that this assumption does not hold and leads systematically to biased diagnosis results.

It is clear that the standard time-rescaling TR1 used to test the assumption iid-
Expon(1) on E;’s is biased since the rejection-percentages are systematically less than
the nominal sizes 4. This is not the case for time-rescaling TRO based on the true
parameters nor the case for the predictive time-rescaling TR2 that will be described in
section 3.



3. A predictive time-rescaling with sequentially estimated parameters

This section examines a predictive formulation of the time-rescaling theorem de-
signed to mitigate the systematic bias identified previously. This asymptotically un-
biased framework leverages Dawid’s predictive-sequential (prequential) approach [5]
to ensure more robust model assessment. As the events arrive sequentially, after each
arrival ¢ the available observed arrival times t(® = (t1,...,t;) are used to update the
estimate of the unknown parameter # and then predict the time of the next event
T;+1. The Gof approach is based on the statistical assessment of the accuracy of these
successive predictions.

Notations —

~ For i < n let 6; denote the ML estimator of 0 using the sample of observed
arrival times (t1,...,t;) available after the i-th event.

— For all t € }ti—l,tz‘], let é[t—} = éi—l = é(tl, coyticn).

— m will denote a minimal sample-size below which the ML estimator of 6 is
inefficient.

Definition 3.1. At each time ¢, let the prequential intensity be A(t) := )\t(é[ﬂ).

N t ¢ X
The prequential cumulative intensity is: A(t) = / AMu) du = / Au, Opy-1) .
0 0

Definition 3.2. For i € {m +1,...,n} the predictive rescaled inter-arrival times are
defined by
E; = AT;)—AT_1)

T’L ~ ~ ~
- / M, fy-y) de = A(T3, 6(Ty, . .. Ti1)) = A(Ty1,6(Ty, ..., Ti—1)). (6)
Ti 1

3.1. A predictive asymptotically unbiased time-rescaling
The following assumptions and regularity conditions will be assumed:

A1l. The studied SETPP will be supposed orderly and non-explosive with 7T, ni? 00
prob.
n—oo

and n_1/2Xn — 0.
prob.

A2. A(t,0) is Fy—predictable, continuous in 6, non-negative almost-surely for all § €

t
© and all ¢ > 0. / AMu, 0) du < +oo for all ¢ > 0 with probability 1.
0

A3. For all i and j in {1,...,k}, Ai(t,0) := aggze) and \;j(t,6) := 8;@(55) exist and

are continuous in @ for all @ € © and all ¢ > 0.

A4. For all jin {1,...,k} let A;(t,0) := w. There exists an integer io such that

for all i > iy, with probability 1, ||A;(Tj—1,600) — Aj(ﬂ—1 + X, 00)|| < My for

some M7 < oo. .
A5. The ML estimator € satisfies the following two conditions:

a. /(0 — 6p) = O,(1).



b. A(t,0,) — A(t, 0p) "=5° 0 uniformly in ¢.

Prob.

Similarly to Theorem 2.1, it is proven that for any fixed integer d, under Hy and
the previous assumptions, d—vectors of the predictive rescaled inter-arrival times
{Ei}i=m+1,...m+a converge (in probability when m — o00) to iid-Expon.(1) rv’s.

Proposition 3.3. If Assumptions (Al,..., A5) hold, then under Hy and for any fixed
d e N*:

(Emits- - Emid) — Bmit, - Bmad) mﬁm 0 where E/s are iid-Expon.(1). (7)

Proof — The proof is detailed in [6].

4. Gof checking of SETPPs based on predictive time-rescaling

4.1. Predictive KS-plots and KS Gof-tests

The predictive Gof checking is based on testing the iid-Expon.(1) hypothesis for the
sequence {Ei}mQ-Sn or equivalently the iid-Unif.[0,1] hypothesis for the sequence
{U; := 1 — exp(—E;) bmei<n. This could be done using a KS-plot i.e. an Expon.(1)
QQ-plot for {Ei}m<i§n or a Unif.[0,1] QQ-plot for {ﬁz}m<1§n A KS Gof-test can also
be used by comparing (using KS distances denoted in the following I?mn) the empir-
ical distribution function (Edf) of Uy’s to the Cdf of the Unif.[0,1] distribution. The
predictive Gof-test will therefore calculate IN(mn and compare it to upper quantiles of
Lis. IN(mn are given by the following equation:

Ko i= (n —m)"? max [ max ( L (7@) , max <[7(i) ool )] (8)

1<i<m—m \ N —mMm 1<i<n—m n—m

where m is a suitably chosen integer (m = n/2 and m = n/5 are used for the numerical
experiments of subsection 4.3) and {ﬁ(i)}lggn,m are the (increasing) order statistics
obtained from the transformed rv’s {ﬁz}ngn

The predictive KS Gof-test calculates IN(mn and compares it to upper quantiles of L.
Hy will be rejected when IN(mn exceeds the appropriate quantile of L.

4.2. Implementation for NHPP and Hawkes processes

For NHPP models with intensity function A(.), the predictive model checking based
on TR2 is easily derived using equation (6) where A(t,0) = at® for NHPP-PLP and
A(t,0) = af~(exp(Bt) — 1) for NHPP-LLP.

For Hawkes processes with a power-law function the predictive rescaled inter-arrival



times are given (for i =m+1,...,n) by

A~

~ T;
B = / A(s, By ) ds (9)

Ti—l
I - -
= i1 (T; = Tio1) + 1_17;511 Z [(61'71 +T;=T;) " = (6o + Tier — 1)) _pH]'
11— j:].

Hawkes processes with an exponential decay have the following predictive rescaled
inter-arrival times:

N .
B = s, B, 1) ds 10
/ QRIS (10)
A i—1 . )
= ia(Ti—Timy) — 5 > [exp (= Bima(Ti = T3)) —exp (— Bim1(Ti—1 — T]))]
i—1 j=1

4.3. Numerical Experiments

The finite-sample validity of Proposition 3.3 is checked by the following four step
simulation approach:
(1) A fixed value 6y of 6 is chosen.
(2) M data sets (of size n each, with n € {50,100,200}) are simulated using the
model with intensity A(., 6p).
(3) For the j-th simulated data-set, the realization E%)n of f(mn is calculated.

(4) The Edf of {E%)n}lg j<m is compared to the Cdf of L5 by comparing their upper
quantiles denoted respectively g5 and qé“ for a set of seven significance levels § €
{0.50,0.25,0.15,0.10, 0.05,0.025,0.01 }. The mean absolute relative error MARE
= %256{0.507.”70.01} (Igs — af*|)/q¥* measures the distance between the Edf of

{l;%?n}jg »m and Lgs, and therefore the finite-sample relevance of Proposition
3.3.

Results presented in figures 1 and 2 suggest that Proposition 3.3 holds in the finite-
sample context since K, ,’s Edf (in dotted blue) are very close to Lys’s Cdf in black
solid lines. This was not the case with the standard time-rescaling TR1 based on a single
estimation step using the whole data set since the curves of K,,’s Edf (in dotdash red)
are shifted from to the Cdf of L.

Table 1 (for NHPP) and table 2 (for Hawkes) compare numerically the upper quantiles
of I?mvn’s Edf and those of Lis. The last columns of these tables give small MARE’s
(between 2% and 3%) suggesting that assumptions A1-A5 used to prove Proposition
3.3 hold for the studied NHPP and Hawkes processes. For the standard time-rescaling
TR1 these MARE values were around 18% for NHPP and 30% for Hawkes processes.
Table 3 compares the MARESs between the standard Ly, distribution and the K,,’s Edf
(for the usual TR1 approach) to the MARESs between the Lis and K, ,’s Edf. Table 3
shows that the predictive time-rescaling TR2 is much less biased than the usually used
time-rescaling TR1 approach.

In these numerical experiments M = 1000 replications were simulated for each one
of the considered processes. When different parameters’ values were experimented the
results were globally very similar to those presented in tables 1 and 2 confirming that
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Figure 1. Cdf of Ly, (in black) with Edf of the KS-statistics K, (in dotdash red) and Efd of the predictive
Kom,n (in dotted blue). NHPP-PLP. (o, 8) = (1, 3).

Proposition 3.3 is valid for a wide range of models and parameter values.

Table 4 shows the size of KS-Gof tests (percentage of rejecting the right model) with
the three time-rescaling approaches TRO, TR1 and TR2 (with m=n/2). It is clear that
the predictive time-rescaling TR2 is much less biased than the standard time-rescaling
TR1 since the rejection-percentages for TR2 are much closer to the nominal levels §.

While these experimental results are promising, further investigation is required to
enhance the statistical power of these predictive Gof procedures. Specifically, future
research should aim to establish a theoretical basis for model identifiability determin-
ing which self-exciting point process models can be effectively distinguished within a
single-trajectory observational framework and which remain indistinguishable given
the available data constraints.

4.4. Modelling arrivals of earthquakes in Japan (end of 2019)

The proposed predictive Gof framework is validated using an empirical dataset of seis-
mic activity recorded near the Japanese islands in late 2019, as documented by [7].
This sample consists of 200 seismic events occurring between October and December
2019 (visualized in Figure 3). Hawkes processes are conventionally employed for seis-
mic modelling due to their capacity to capture temporal clustering, specifically the



Hawkes-Exp., n=20

KS [Cdf & Edf]

Hawkes-Exp., n=50
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Figure 2. Cdf of Ly (in black) with Edf of the KS-statistics K, (in dotdash red) and Efd of the predictive

Kom,n (in dotted blue). Hawkes-Exp. (u, «, 8) = (0.3,1.2,1,5).

Signif. level 6  0.50 0.25 0.15 0.10 0.05 0.025 0.01 MARE
Lrs quantiles 0.822 1.019 1.138 1.224 1.358 1.480 1.628
NHPP-PLP. (o, §) = (1,3)

n = 50 0.829 1.032 1.149 1.257 1.428 1.568 1.720

(09%) (1.3%) (1.0%) (2.7%) (5.2%) (5.9%) (6.7%)  3.3%
n = 100 0.817 1.030 1.167 1.278 1.393 1.492 1.688

(05%) (1.1%) (25%) (4.4%) (2.6%) (0.8%) (3.7%) 2.3 %
n = 200 0.817 1.017 1.158 1.250 1.346 1.468 1.595

0.6%) (0.2%) (1.8%) (21%) (0.8%) (0.8%) (2.0%) 1.2 %

NHPP-LLP. («, 8) = (0.01,0.05)

n = 50 0.833 1.051 1.191 1.285 1.415 1.540 1.689

(14%)  (3.2%) (4.6%) (5.0%) (4.2%) (41%) (3.8%) 3.7%
n = 100 0.848 1.025 1.164 1.245 1.414 1.543 1.643

(32%) (0.6%) (2.3%) (L7%) (41%) (4.3%) (0.9%)  2.4%
n = 200 0.824 1.032 1.158 1.237 1.357 1.461 1.612

(02%) (1.3%) (1.7%) (1.1%) (0.1%) (1.3%) (1.0%)  0.9%

Table 1. NHPP models: upper quantiles of I?mm distribution. Absolute relative errors between upper quan-
tiles of L5 and those of the sample distributions of K, , are given between brackets. MARE for each line is
given in the last column.




Signif. level §  0.50 0.25 0.15 0.10 0.05 0.025 0.01 MARE
Lrs quantiles 0.822 1.019 1.138 1.224 1.358 1.480 1.628
Hawkes-Pow. (u, k,c,p) = (0.1,0.2,0.3,1.5)

n =50 0.807 1.009 1.146 1.293 1.359 1.421 1.557

(1.9%) (0.9%) (0.7%) (5.6%) (0.1%) (4.0%) (43%)  2.0%
n = 100 0.816 1.097 1.194 1.268 1.355 1.403 1.499

(0.7%)  (7.7%) (4.9%) (3.6%) (0.2%) (5.2%) (7.9%) 4.3 %

Hawkes-Exp. (u, a, 8) = (0.3,1.2,1.5)

n =50 0.837 1.045 1.145 1.218 1.375 1.539 1.566

(1.8%) (26%) (0.6%) (0.5%) (1.3%) (4.0%) (38%)  2.0%
n = 100 0.810 1.031 1.162 1.243 1.421 1.515 1.583

(1.5%) (1.2%) (21%) (1.5%) (4.7%) (2.4%) 2.8%) 2.3 %

Table 2. Hawkes processes: upper quantiles of Iw(m,n distribution. Absolute relative errors between upper
quantiles of L, and those of the sample distributions of K, » are given between brackets. MARE for each
line is given in the last column.

NHPP-PLP NHPP-LLP  Hawkes-Pow. Hawkes-Exp.

Time-rescaling approach
TR1 TR2 TR1 TR2 TR1 TR2 TR1 TR2

Sample size

n = 50 18.3% 3.3% 192% 3.7% 36.8% 2.0% 29.2% 2.0%
n = 100 17.5% 2.3% 188% 24% 39.2% 4.3% 27.7% 2.3%
n = 200 181% 1.2% 15.9% 0.9% 40.3% 27.5%

Table 3. MAREs assessing differences between upper quantiles of Ly and those of the sample distributions
of K, (for TR1) and Ko, » (for TR2). 1000 replications were simulated for each case. TR1: standard time-rescaling
with estimated parameters. TR2: predictive time-rescaling [m=mn/2].

NHPP-PLP NHPP-LLP Hawkes-Pow. Hawkes-Exp.

Time-rescaling approach
TRO TR1 TR2 TRO TR1 TR2 TRO TR1 TR2 TRO TR1 TR2

Sig.lev

0=1% 1.1% 01% 1.1% 09% 0.0% 12% 1.1% 0% 1.3% 05% 0.0% 2.6%
0=5% 53% 0.7% 55% 48% 06% 62% 4.7% 0% 61% 43% 02% 8.6%
0=10% 10.2% 1.9% 10.4% 10.5% 2.0% 11.3% 9.6% 0% 11.2% 9.0% 0.2% 13.8%

Table 4. Sizes of KS Gof-tests: percentages of Hg rejection on data simulated from the tested model. Sample
size n = 50 and 10000 replications. TRO: time-rescaling with the true parameters. TR1: time-rescaling with
estimated parameters. TR2: predictive time-rescaling [m=mn/2].
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Figure 3. Event times of 200 Japanese seismic episodes between October 6 and December 5, 2019.

triggering of aftershocks by primary seismic events. This dataset is a subset of the
broader catalog analysed in [7] (Chap. 11), where Q-Q plot diagnostics indicated that
the Hawkes-Exponential model achieves a superior fit compared to both NHPP and
Hawkes-Power law formulations.

Figure 4 and Table 5 present the p-values of the predictive KS Gof assessment for
the selected seismic sequence [TR2 with m = n/2]. The predictive test results indicate
a definitive rejection of NHPP models from the 115th event onward. Analysis of the
last events suggests that while both Hawkes specifications outperform the NHPP, the
Hawkes-Exponential model shows signs of diminishing fit. In contrast, the Hawkes-
Power law model exhibits increasing p-values during the final stages of the sequence,
suggesting it is the most robust candidate for modelling the dynamic evolution of this
seismic activity.

Earthquake 190 191 192 193 194 195 196 197 198 199

occurrence Z P—Values

NHPP-PLP. 2.10e-03 2.6e-03 3.2¢-03 3.8¢-03 4.5e-03 5.2¢-03 6.0e-03 4.4e-03 5.4e-03  6.5e-03
NHPP-LLP. 5.7e-04  6.8¢-04 82e-04 9.7e-04 1.1e-03 1.3¢-03 1.6e-03 1.8e-03 2.1e-03  2.5¢-03
Hawkes-Pow.  0.925 0.892 0.962 0.991 0.969 0.929 0.870 0.928 0.869 0.796
Hawkes-Exp. 0.323 0.389 0.318 0.257  0.206 0.163 0.128 0.161 0.126 0.098

Table 5. P-values of the predictive Gof-test for the 10 last Japanese earthquake occurrences during the
studied period [October 6 - December 5, 2019].

5. Conclusion

This research evaluates the efficacy of time-rescaling for goodness-of-fit (Gof) test-
ing in self-exciting temporal point processes under single-trajectory observation. We
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Figure 4. P-values of the predictive KS Gof-test on the last 200 Japanese seismic episodes of 2019 [TR2 with
m=mn/2].

first quantified the systematic bias inherent in the standard plug-in approach, finding
discrepancies of approximately 18% for NHPP and 30% for Hawkes models between
empirical and theoretical Kolmogorov-Smirnov (KS) quantiles. These results confirm
that standard time-rescaling is frequently unreliable for model validation.

To resolve this, we introduced a predictive time-rescaling framework based on a se-
quential inferential procedure. We proved that the resulting transformed inter-arrival
times converge to i.i.d. Exp(1) variables, effectively eliminating the systematic bias.
Numerical simulations demonstrate that this predictive-sequential approach signifi-
cantly outperforms the standard method; for instance, it achieves rejection rates of up
to 91% for misspecified models where the standard test was powerless.

Despite these promising results, several avenues for future research remain:

- Model Separability: we aim to theoretically determine which SETPP classes can
be distinguished within a single-trajectory framework, potentially leveraging the
amount of information concept.

- Optimization of m: further work is required to determine the optimal training
window m. This involves a bias-variance trade-off between parameter estimation
accuracy and the convergence quality of the rescaled times.

- Theoretical Expansion: We intend to extend Proposition 3.3 to prove that the
predictive-sequential empirical process converges to a Brownian bridge, providing
a more rigorous foundation for a wider array of Gof tests for SETPP models.
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