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Abstract

We define the reliability of the results of fuzzy clustering. In this case, we consider both the
degree of belongingness of an object to a cluster and the classification situation. When
considering both, we use t-norm defined in a statistical metric space. We also show that by
using the asymmetric aggregation operator proposed by the author, it is possible to consider
the difference in weights between the degree of belongingness and the classification situation.

1. Introduction

In today's world, where large amounts of complex data are being collected in a wide variety of fields,
clustering methods are becoming increasingly important as they summarize data and extract its
latent characteristics by grouping the data based on their similarities.

Among clustering methods, there is a methodology that takes into account the uncertainty of an
object's cluster membership and attempts to extract the structure of real-world complex data with
a smaller number of clusters.

In the past, classification methods based on statistics and probability theory were used as the
basis, but recently clustering methods that more flexibly expand the solution space of the clustering
partition matrix have been proposed. Fuzzy clustering is one of these types of clustering methods,
and is a method for extracting fuzzy clusters defined based on fuzzy subsets, which are the basis of
fuzzy logic. Fuzzy theory, along with neural networks and evolutionary computation, is a field of
study based on soft computing and constitutes computational intelligence (CI) [1], [2], a branch of
artificial intelligence.

The advantage of fuzzy clustering is that it allows for uncertainty in the membership of objects
to clusters, making it possible to obtain classification results with excellent robustness and
tractability for large-scale, complex data. However, on the other hand, as the classification results
become more complex, they are difficult to interpret, and the reliability of the results is therefore
an issue. In particular, with regard to the reliability of fuzzy clustering results, due to the definition
of fuzzy subsets, the classification results cannot be measured with normal probability measures,
and original validity functions are currently being developed.

Therefore, we define the reliability of fuzzy classification results by introducing the validity
measure of fuzzy clustering into the fuzzy clustering results. An aggregation operator defined in a
statistical measure space [3] is used to aggregate the clustering results and the validity function
values. We also show that by applying the asymmetric aggregation operator developed by the
author [4], it is possible to introduce weights that take into account the difference between the
validity measure values and the clustering results. Furthermore, from the mathematical definition

of these aggregation operators, we show that the proposed reliability measures make it possible to



remove noise in the data. Furthermore, the proposed method can be used for classification with
learning in machine learning. This is because it utilizes the robustness of fuzzy clustering for large
amounts of complex data, which solves the problem of the reliability of the training data. In other
words, noise can be removed by converting objects from the training data to the solution space of
fuzzy clustering. We demonstrate the effectiveness of our method through several numerical

examples.

2. Reliability of Fuzzy Clustering

The results of fuzzy clustering are represented by the partition matrix U = (u;,). Here, uy,i =
1,..,n,k=1,..,K is the degree of belongingness of an object i to a cluster k, and is assumed to
satisfy the conditions u;, € [0,1],XX_, u; = 1. Here, n is the number of objects, and K is the
number of clusters, which is given in advance. Then, the reliability of an object i in cluster k is

defined as in equations (1) and (2).

fik = pQug, V). ey
fik = g(uik, vy). (2)

Here, v; represents the classification status of an object i with respect to K clusters, and is a

measure of validity for the fuzzy partition U shown in equation (3).

K K
v = Zuizk: v;=1 +Zuik logg uk.  (3)

k=1 k=1

Furthermore, p in equation (1) is an aggregation operator which satisfies the following conditions:

p:[0, 1] x [0, 1] - [0, 1] VYa,b,c,d € [0, 1]

0<p(ab) <1, p(a0)=p0,a) =0,p(al)=p(,a) =a (Boundary conditions)
a<c, b<d= p(ab) <plc,d) (Monotonicity)

p(a,b) = p(b,a) (Symmetry)

T-norm function in the statistical metric space is a typical example that satisfies the above

conditions of the aggregation operator p, and is generated by the generating function in equation

(4).

pCe,y) =TI +f0)), @)

where f is a continuous monotonically decreasing function as follows:
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Furthermore, g in equation (2) is a function that replaces the symmetric condition with an

asymmetric condition among the conditions satisfied by the aggregation operator p, and its

generating function is shown in equation (5).



9 y) = fIIFE@ +ef ), (5)

where ¢ 1is a continuous monotonically decreasing function, and satisfies the following conditions:
¢:[0,1] > [0,00], (1) =1.

That is, the asymmetric aggregation operator g satisfies the following conditions:

g:10, 1] x [0, 1] - [0, 1] Va,b,c,d € [0, 1]

0<g(ab)<1, g(a,0)=0, g(a,1) =a (Boundary conditions)
a<c¢ b<d= g(ab)<g(cd) (Monotonicity)

g(a,b) #g(b,a), a#b (Asymmetry)

Therefore, in equation (2), fi = g(uu, v:) #= g(Ws, w), Uy # v;.

3. Numerical Examples

Table 1 shows examples of t-norm for Equation (4). Figure 1 shows the difference in reliability
defined by Equation (1) due to different t-norms. The horizontal axis represents fuzzy cluster 1,
and the vertical axis represents fuzzy cluster 2. The solid lines show the membership degrees
obtained as a result of fuzzy clustering, and the numbers 1 to 11 represent object numbers. The
dashed lines show the reliability values for different t-norms shown in Table 1. From this figure,
we can see that excluding the minimum and bounded product, if we obtain an uncertainty
clustering result, then the degree of reliability also decreases. Also, greater uncertainty results
make larger the difference in the degree of reliability depending on the differences of the t-norm.
These findings demonstrate the validity of the proposed reliability measure for fuzzy clustering
results. In addition, the minimum and bounded product are not adaptable for the degree of
reliability, because the minimum is not Archimedean and the bounded product tends to have the
same values.

In Figure 2, (a) shows the reliability using the asymmetric aggregation operator g(x,y) =
xy(z‘x)zgenerated using the generating function for algebraic product f and ¢(x) = (2 —x)? in
equation (2). (b) shows the reliability using the asymmetric aggregation operator g(x,y) =
x3y/(1 —y + x%y) generated using the generating function for Hamacher product f and ¢(x) =
1/x3, excluding the cases where the membership is (1,0) or (0,1). These figures show that the
asymmetry of the asymmetric aggregation operator is equivalent to changing the weight related to
the validity of the reliability, and that it can be used depending on whether the fuzzy clustering
results or the classification situation are considered more important.

Table 2 shows the frequency of device selection by students for each type of assignment in English
classes. In this table, the assignments are divided into "L: Listening; R: Reading; S: Speaking; W:
Writing," and the number after the letter indicates the number of words. For example, "L1"
indicates a single-word listening assignment. Figure 3 shows the result of a principal component
analysis of the data in Table 2. Figure 3 reveals that students select device types depending on
whether the number of words is large or small, and whether the assignment is "Listening/Speaking"

or "Reading/Writing." Based on the results in Figure 3, fuzzy clustering was performed with four



clusters. Figure 4 shows the membership and reliability results for Cluster 1 and Cluster 2. Figure
5 shows the results of other cluster combinations. From these figures, we can see the same four
clusters obtained. Cluster 1 is “Listening and Speaking large words”, Cluster 2 is “Writing and
Reading large words”, Cluster 3 is “Listening and Speaking small words”, and Cluster 4 is “Writing
and Reading small words”. Also, if the objects are an uncertain classification structure, then the
degree of reliability of these objects is going to be significantly smaller when compared with the
objects that are clearly classified into a cluster. These findings suggest that reliability may be able
to remove noise from the initially obtained membership results.

Table 1 Examples of t-norm

t-norm t(z,y) f(z)
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Figure 1 Reliability of fuzzy clustering depending on t-norm
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Figure 2 Asymmetric reliability



Table 2 Frequency of device selection by task type

Situations |Desktop PC Laptop PC | Tablet E-reader |Smartphone| Paper
L1 29 60! 2 76 15
L20 25 61 31 12 78 14
L150 35 79| 29| 1 56 9
L500 40 84 27 9 41 8
L2000 42 85 21 9 28 10
L50000 41 80| 19 6 27 13
R1 34 59/ 34] 17 69 40
R20 32 62| 34] 18 67 37
[R150 36 74 35 18 50 36
R500 41 87| 34 16 24 40
R2000 38 85 25| 12 18 47
R50000 35 75| 22 8 13 47
S1 28 51 22 7 67 12
520 29 53| 20| 6 65 10
S150 31 69 23 8 48 13
S500 31 69/ 23| 6 37 12
$2000 32 69/ 17 3 30 12
S50000 32 66/ 15 2 28 12
W1 33 65| 27| 8 48 44
W20 37 i 27 7 44 42
W150 44 85 19 6 23 34
W500 45 86! 14 4 12 27
W2000 45 87| 8| 3 6 27
W50000 45 83 6 1 5 26
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Figure 3 Result of principal component analysis
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Figure 4 Degree of belongingness of device selection data and results of degree of reliability
with respect to clusters 1 and 2
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Figure 5 Degree of belongingness of device selection data and results of degree of reliability

with respect to other cluster combinations

4. Conclusion

This paper defines the reliability of fuzzy clustering results considering both the degree of
belongingness and classification status of objects to clusters. To consider both, we use aggregation
operators. Especially, by using an asymmetric aggregation operator, we can show the differences in
weights between the degree of belongingness and classification status. For the future study, other
validity measures of fuzzy clustering, such as min-max operation, weighted intraclass and
interclass sum of squared deviations, hypervolume, or partition density measures, will be used for
obtaining classification status of objects to clusters in the proposed reliability of fuzzy clustering
results. Also, we believe this degree of reliability can be used for the appropriate selection of t-

norms.
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