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Title is “Mixture-Based Approximately Unimodal Likelihood Model for Ordinal Data”.

Subject is prediction (ordinal regression; OR) for ordinal data (x;,y,), (x5, v,), - ~ (X,Y):

 Estimation of Pr(y|x) « Explanatory variable X € R% can be in any format

» Classification * Target variable Y € [K] = {1, ..., K} is categorical
and has a “natural ordinal relation” 1 < --- < K

Many OR applications:
age estimation from facial image; analysis of rating in EC site, credit rating & questionnaire

Facial image m *** *‘}ﬁ?

X=x : """ Aaa,Aa, A Baa, Ba, B, Caa, Ca, C

- -

AgeY =y 20 < 40 strongly agree, ag., neutral, disag., strongly disag.

Mathematical characterization of “natural ordinal relation” is key for success in OR.
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Previous works considered that conditional probability distribution (CPD) (Pr(y|x)), e[k
should be unimodal in a large domain of X:

Pr(1|x) < --- < Pr(M,|x) and Pr(M,|x) = --- = Pr(K|x) with a conditional mode M,, € [K]

Facial image ’-: ;—‘
X=x :

e
il [ -

CPD of age Y -
Priylx)yerg =0
36 38 40 42 44 18 20 22 38 2042

- J. F. P. da Costa+, “Classification of ordinal data using neural networks,” ECML, 2005.

+ M. lannario+, “Cub models: statistical methods and empirical evidence,” in Modern Analysis of Customer Surveys, 2011.
+ C. Beckham+, “Unimodal probability distributions for deep ordinal classification,” ICML, 2017.

+ R. Yamasaki, “Unimodal likelihood models for ordinal data,” TMLR, 2022.
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Setting:
» 21 real-world ordinal datasets used in a survey (Gutierrez+,15)

» 100 trials, training data size: 800 (large), validation/test data size: 100/remaining
* Estimate CPD (Pr(y|x)), e[k by multinominal logit model with a neural network

- Evaluate unimodality rate (UR) E[I{(Pr(y|x)),¢[x] is unimodal. }| with test data

Result: Many real-world ordinal data would have “high unimodality rate”.

Tab.1: meanztstd of UR & evaluation for uniform random data (for comparison in same K)

dataset d K UR dataset d K UR dataset d K UR dataset d K UR

BA5® 32 51.9999+.0006) LEV 4 5 1.9594+.0570| CO10 12 10|.8308+.1917 uniformon A; - 4 |.3326+.0135
SWD 10 4 [.9996+.0031| CAR 21 4 [.9380+.1693| CE10° 16 10]|.7239+.2580 17 Ay - 5(.1314+.0108
WQR 11 6[.9959+.0186( CH5 8 5 |.9334+.0924| ERA 4 9 |.7122+.1581 1" As - 6 |.0443+.0065
CO5 21 51.9958+.02501 CE5 8 5 |.8866+.1102| BAI10O® 32 10|.6805+.3600 I Ag - 9 |.0009+.0010
CE5> 16 5 |.9814+.0366( AB5 10 5 |.8785+.1024| CEIO0 8 10/(.4535+.2263 2 . —

BAS 8 5(.9760+.0894| COl10° 21 10].8605+.1948| AB10 10 10|.3232+.1989 Low: .0001~.3326

High: .3232~.9999

+ P. A. Gutierrez et al., “Ordinal regression methods: survey and experimental study,” TKDE, 2015.
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Unimodal Likelihood (UL) Model &
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(Yamasaki,22) developed a UL model for modeling “high unimodality rate” data:

Multinominal logit model: | UL model: J .
- nrestricted
Psmv(g(fﬂ)) Pa‘:m,y (9(33)) gk(aj)n .
with with o .
g: rd _, RK g: rd _ RK on- ecre}asmg l—
oty gk(m)c D
Psm,y(u) = oK . g (x) = gi1(x) fork =1 Unimodal ERE=g
T k = N (] <= S T
= §i1(@) +{gu(@)? fork=2  &(@
5 Standardize
gr(x) = —{gr(x)}y” fork=1,...,K Psm,y(f](af;))ﬂ '1—'_ TI—.‘

Theorem (simplified)
UL model is ensured to be unimodal & can represent any unimodal CPD:
{(Psmy(G())yeix) | g : R = RX} = {p: RY — Ag_1} with Ag_; = {unimodal p € Ag_;}

* R. Yamasaki, “Unimodal likelihood models for ordinal data,” TMLR, 2022.
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Motivation:
In many ordinal data, CPD (Pr(y|x)),¢[x) would be non-unimodal at some points X = x:

Tab.1: meanztstd of UR & evaluation for uniform random data (for comparison in same K)

dataset d K UR dataset d K UR dataset d K UR dataset d K UR
BAS® 32 51.9999+.0006| LEV 4 5 [.9594+.0570| COI10 12 10/|.8308+.1917 uniformon A; - 4 |.3326+.0135
SWD 10 4 ].9996+.0031| CAR 21 4 |.9380+.1693| CEI0’ 16 10|.7239+.2580 17 Ay - 5(.1314+.0108
WOQR 11 6(.9959+.0186 CH5 8 5 |.9334+.0924| ERA 4 9 |.7122+.1581 17 As - 6 |.0443+.0065
CO5 21 51.9958+.0250( CE5 8 5 |.8866+.1102| BAI0O® 32 10].6805+.3600 1 As - 9 |.0009+.0010
CO5 12 5|.9889+.0459| BAIO 8 10(.8831+.2141| CHIO 8 10/(.5086=+.3127 i Ae - 101.0001%.0003
CE5 16 5 (.9814+.0366] AB5 10 5 [.8785+.1024| CE10 8 10/.4535+.2263 2 . —
BAS 8 5/[.9760+.0894| COl10® 21 10].8605+.1948| AB10 10 10|.3232+.1989

High but not 1

UL model has a bias at points with a non-unimodal CPD.

Goal:
To decrease bias and improve prediction performance, develop a novel likelihood model with
better representation of ordinal data (higher representation ability).
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We consider that CPD (Pr(y|x)),¢[x; of ordinal data should be close to be unimodal at
points X = x where (Pr(y|x)),¢[x] is not strictly unimodal.

Rating distribution in EC site Frequency distribution of Household income
(amazon.com) (cbs.nl/en-gb/visualisations/income-distribution)
Customer reviews o s s o S e
iy e

1,486 global ratings

astar [ 13% Above ~
sstar ] 7% U
2star ] 4% I
1 star . o5 T e S e e TR

Mathematically, using Hausdorff distance Dy (p,S) = melgl ||p - q|| and unimodal set A,_; =
q

{unimodal p € Ax_,}, we further assume that unimodality deviation Dy, ((Pr(ylx))yE[K],ZK_l)
of CPD (Pr(y|x))y¢x) is low at most X = x.
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Setting:

» 21 real-world ordinal datasets used in a survey (Gutierrez+,15)

» 100 trials, training data size: 800 (large), validation/test data size: 100/remaining
* Estimate CPD (Pr(y|x)), e[k by multinominal logit model with a neural network

» Evaluate mean unimodality deviation (MUD) E [DH ((Pr(ylx))ye[m,ZK_1 )] with test data

Result: Many real-world ordinal data would have “low unimodality deviation”.
Tab.2: mean+tstd of MUD & evaluation for uniform random data (for comparison in same K)

dataset d K MUD dataset d K MUD dataset d K MUD dataset d K MUD
BAS® 32 5(.0000+.00001 LEV 4 5 ].0003+.0007| CO10 12 10].0009+.0019 uniformon A; - 4 |.0752+.0026
SWD 10 4 ].0000+.0002] CAR 21 4 |.0003+£.0010| CE10° 16 10|.0017+.0023 1 Ay - 5 1.1000+.0023
WQR 11 6[.0000£.0001] CHS 8 5 [.0009+.0017] ERA 4 9 [.0048+.0049 17 As - 6 |.1162+.0023
CO5 21 51.0000£.0000f CE5 8 5 [.0020+.0024| BA10’ 32 10(.0012+.0018 I Ay - 9 |.1365+.0016
CO5 12 5(.0001+.0003| BAIO 8 10/(.0000+.0001| CHI10 8 10].0061+.0072 I Ao - 10 1385: 0014
CE5” 16 5 (.0004+.0007( ABS 10 5 (.0017+.0022| CEIO 8 10/(.0058+.0052 ? . —

BA5 8 51.0000+.0001| CO10° 21 10(.0003+.0009| ABI10 10 10(.0105+.0086 High; .0752~.1385

Low: .0000~.0105

+ P. A. Gutierrez et al., “Ordinal regression methods: survey and experimental study,” TKDE, 2015.
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We propose a mixture-based AUL model for modeling “low unimodality deviation” data :

PAUL,y(gl (m)a gz(iB);i‘) = (1 - r)Psm,y(gl(zn)) + rPsm,y(g2(:B)) with g1,92 : Rd - RK,
unimodal likelihood multinominal logit r € [0, 1]: mixture rate

r—Y 3 3 4 5§ *y ' 1 2 3 4 5 Yy T 1 3 3 4 5 *y

— Theorem (simplified)
1. AUL model can represent any unimodal CPD: It can represent only unimodal
{PauL.y(91(-),92():7) | 91,92 : RY - RX} 2 {p :RY — Ag_;} or close to be unimodal CPD.
2. Unimodality deviation of AUL model is bounded from above by /2 r:
Du((PauL.y(g1(x), g2(x); r))ye[x]» Ak —1) < V2r for any gy, g2, @

3. Representation ability of AUL model is non-decreasing in r:
{PauL.y(91(:),g2(-):r1) | 1,92 : RY — RX} C {Paury(91(:),g2();m2) | 91,92 : RY — RX}ifry <1
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Setting:
» 21 real-world ordinal datasets used in a survey (Gutierrez+,15)
» 100 trials, training data size: 25,50, ..., 800, validation/test data size: 100/remaining
* Estimate CPD (Pr(y|x)),e[x; by multinominal logit (ML) (r = 1), unimodal likelihood (UL)
(r = 0), approximately UL (AUL) (r € {0.05,0.1, ..., 0.95}) models with a neural network
» Evaluate negative log likelihood (NLL); mean zero-one & absolute error (MZE & MAE)
E[¢(f(x),¥)], £(, k) = I(j # k), |j — k| for a classifier f(x) = argmingepx) X5=1€(k,y) P,(g(x))

Result (NLL): Fig.1: Typical tﬁwgwors inr&n
Tab.3: Number of wins over 21 datasets in Bonferroni 2.2
correction with significance level 0.05 of U-test. 21

NLL | n=25 n=50 n=100 n=200 n=400 n=3800 '_g

AULvs ML | 18,0 19,0 140 7.3 0,10 1,14 1.9
AULvs UL | 140 12,0 8,0 5.0 3.1 Tl ‘

00 01 02 03 04 05 06 07 08 09 10
UL~ AUL mixture rate «ML
+ P. A. Gutierrez et al., “Ordinal regression methods: survey and experimental study,” TKDE, 2015.
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Result (MZE & MAE):

Tab.4: Number of wins over 21 datasets in Bonferroni
correction with significance level 0.05 of U-test.

MZE | n=25 n=50 n=100 n=200 n=400 n=300
AULvs ML | 19,0 17,0 10,0 1.3 1:3 4,5
AULvs UL | 6,0 7.0 10,0 11,0 8,0 6,0

MAE | n=25 n=50 n=100 n=200 n=400 n=300
AUL vs ML | 20,0 16,0 10,0 3.2 0.5 1.5
AULvs UL | 3,0 4,0 2,0 5,0 4,0 7,0

Regarding NLL, MZE & MAE,
AUL model was better than UL model,
and better than ML model for small n.

{1800
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Fig.2: Typical behaviors in r & n

ABI0O
L 71iAai3diiin=125
L3llle i 4iin=50
eSS = n = 100
resiteesragadtt 1in =400
TT - n|= 800

00 01 02 03 04 0.5 06 07 08 09 L0
UL~ AUL mixture rate r «—ML
ARB1D

. . TtIlI1Ilen=25

L #'i’d”T _'Tjn =50
! ’i”"}i* 3 n =100
ot %n = 200

L LEL4- 0 = 400
S ) = 800

{F
b4

0.0 01 02 03 04 05 06 07 08 09 1.0

UL~ AUL mixture rate ¢ ML
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We verified that many ordinal data would have “low unimodality deviation”.
Tab.2: meantstd of MUD & evaluation for uniform random data (for comparison in same K)

dataset d K MUD dataset d K MUD dataset d K MUD dataset d K MUD

BAS5® 32 51.0000+£.0000( LEV 4 5 [.0003+.0007( CO10 12 10].0009+.0019 uniformon Ay - 4 [.0752+.0026
SWD 10 4 |.0000+.0002] CAR 21 4 ].0003+.0010( CE10* 16 10 [.0017+.0023 o Ay -5 .1000+.0023
WQR 11 6(.0000+£.0001| CHS 8 5 ].0009+.0017( ERA 4 9 [.0048+.0049 " As - 6 ].1162+.0023
CO5” 21 5(.0000+.00001 CE5 8 5 [.0020+.0024] BAI10® 32 10 (.0012+.0018 " Ag - 9 [.1365+.0016
CO5 12 5(.0001£.0003] BAIO 8 10].0000+.0001| CHIO 8 10(.0061+.0072 7 Ae - 10].1385+.0014
CES’ 16 51.0004+.0007( ABS 10 5 |.0017+.0022( CEI0 8 10].0058+.0052 i . —

BAS 8 5(.0000£.0001| CO10" 21 10].0003+.0009( ABIO 10 10 (.0105+.0086 High: .0752~.1385

Low: .0000~.0105

We proposed a mixture-based approximately unimodal likelihood (AUL) model:
PAUL,y(gl (CE), 92(17); r) = (1 - r)Psm,y(gl (LE)) + rPsm,y(QZ(w)) with 91,92 : R — RK,
unimodal likelihood multinominal logit  r € [0, 1]: mixture rate

T 3 3 7 5 vy T 2 3 4 5 'y T 1 2 3 4 5 Y

AUL model gave good prediction for ordinal data when training data size was small.
Thank you for listening! Contact: ryoya.yamasaki@r.hit-u.ac.jp
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We define “representation ability” of a likelihood model as a functional of the CPD that that
likelihood model can represent (see also (Yamasaki,22)):

For likelihood model (Py(g(x)))ye[K],g € G, representation ability is {(Py(g(x)))yE[K] | geEG }

+ R. Yamasaki, “Unimodal likelihood models for ordinal data,” TMLR, 2022.
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(da Costa+,05) inspired by shape of binomial and Poisson distributions and developed
K-1
k—1

_ _ i (v,e8(®) ) k=1,-1
)pk 1(1 _p)K g 5 L with ppoi(k, 1) = /lk_e

1 : —
Pin(¥> 5o=zwr) With poin(k, p) = ( R o (K8 &=1)!

IR =

14
i \
[ 1
i | = | =TT St
1 - :__'_ o 1 —;_“l‘ _xﬂ‘ e
\ i "'-'—""-{.'-';;-"' e | | e e
: — e e g i .2 A -
| = e kS | 0 |

kpl K =1
-
L1

I T =

r F CSSET TE— )

pr el P, L T g
P o it S

L a 1 1 b L T ] bLs

&

(lannario+,11) developed a mixture of (da Costa+,05)’s binomial-based and uniform models,
(Beckham+,17) developed scaling-extension of (da Costa+,05),
(Yamasaki,22) developed various models with higher representation ability.

&

- J. F. P. da Costa+, “Classification of ordinal data using neural networks,” ECML, 2005.

+ M. lannario+, “Cub models: statistical methods and empirical evidence,” in Modern Analysis of Customer Surveys, 2011.
+ C. Beckham+, “Unimodal probability distributions for deep ordinal classification,” ICML, 2017.

+ R. Yamasaki, “Unimodal likelihood models for ordinal data,” TMLR, 2022.
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We also evaluated distribution of unimodality deviation Dy ((Pr(ylx))ye[K]:ZK—l ) as well.

1

1071‘
1072.
S0
L‘10—4_
1075,

10-°

Low Unimodality Deviation

AB10

I

l

0.0

0.1

0.2

unimodality deviation estimate Dy ;

0.3

uniform on Ag

HiToTsuBASHI
UNIVERSITY

1

1071 J
1072.
S100
L410—4_
1075,

I

10°°

0.0

0.1

0.2

0.3

unimodality deviation estimate Dy ;

Regarding distribution, many real-world ordinal data would have “low unimodality deviation”.
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From bias-variance tradeoff, we expect that likelihood models with good representation of data and
smaller representation ability will give good prediction performance with small-size training data.

Unimodal Approximately unimodal Unconstrained
A likelihood model likelihood model likelihood model

- -——
- - -—— - -
- i -—— - -~——
- - - -
- — - —

as training data size increases

@ for every model

for unimodal or
high-UR data

U

>

Prediction error ~
Bias-dep.term + Variance-dep.term

for high-UR and low-UD data

Representation ability of likelihood model
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UL/ML and AUL models are implemented as follows:
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We trained every model by Adam optimization with the NLL as the objective function, mini-
batch size 16, and ascending learning rate 102t/300=% gt ¢-th epoch for 300 epochs.

At the end of each epoch, we evaluated the errors, NLL, MZE, MAE, and MSE, with validation
data of the size 100.

We then adopted a model at the epoch when the validation error got minimum (and
simultaneously selected the mixture rate r), and calculated the error with remaining test data
of the size (n,; — n — 100) for that model.
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We also evaluate mean squares error (MSE). | We also experimented face-age estimation

, ~ ABILO - with n = 1250,2500,5000,10000,20000,40000.
o IetTrtEt Ll LIS , AFAD
R4l o e o e ey G 53 l = o : . i . . .
= 4 FT Tt E] ' L NS
=45 R el S 2 : - 31
%0 £33 :i-ja;_' s | =
i E%M"’“E?E'Liéiﬁ_m_if P TE LRI = 2o~ S S o ) G P
T S Eaa=—= == === i 25 _
00 0.1 02 03 04 03 06 07 0.8 09 10 29 '
niture rate r

!
DO 2 03 04 05 06 07 08 09 1.0
Nture rate ¢

ATAD AFAD
4751 ! ' W
B oy Ba T 25 11 i N
rar 4,504 m : o = [ RS e R
- e o a0r -5 8 i
= e E = 2B T - St g =sgdeT =" = oo E B g
7420 F L | B0 ¢
= PO S e WS- SR ¥ R i o P R e
4.001 : | Ho——————t—1—1
0.804 |
0g 0l 0.2 03 04 05 06 0.F 08 09 1.0

o0 01 02 03 04 05 06 OF 08 09 10
mixtiare rate v

mixture rate ¢

0O 0L 02 03 04 03 06 0.5 08 09 10
mixture rate
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We also experimented cumulative-logits (CL), proportional-odds (PO) CL, models:

CL: POCL: _ . )

m fork =1 PCl,y(g(m)) Wlﬂ]g(.’f:) =(b1 - a(m)s ... abK—] - a($))a
Pay(g(x)) = 1—m fork = K i by fork =1
1+eflz.v(m) - |+e*2]y71($) for other & - Bk—l + {bk}z fork =2
Pony(§(2)) with g() = (~{b; —a(x)}?, ..., ~{bx — a(@)}?)
NLL | n=25 n=50 n=100 n=200 n=400 n=800 )

AUL v ML | 180 190 140 73 om0 ri# OCLmodelis popularand often

AUL vs UL | 140 120 80 50 31 7l called “ordinal regression model”.

AUL vs CL | 170 140 102 66 35 38

AUL vs POCL| 161 190 161 144 127 174 -

AT v 111 143 122 121 110 110 AUL model is better for small n.

MZE | =25 n=50 n=100 n=200 n=400 n=800 MAE | n=25 n=50 n=100 n=200 n=400 n=800
AUL vs ML | 190 170 100 1,3 13 45 AUL vs ML | 200 160 100 32 05 15
AUL vs UL | 60 70 100 11,0 80 60 AUL vs UL | 30 40 20 50 40 70
AUL vs CL | 160 80 50 31 21 23 AUL vs CL | 110 110 70 20 L1 L1l
AUL vs POCL| 181 170 160 150 141 102 AUL vs POCL| 60 80 120 80 91 6.2
AUL vs 41 60 100 140 170 140  AUL vs 60 40 51 81 90 110
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We also experimented unimodality-promoting regularization learning (UPRL) methods.
Here, ML is ML + UPRL; AUL" is AUL + UPRL.

NLL | n=25 n=50 n=100 n=200 n=400 n=800
AUL vs ML | 180 190 140 73 0,10 1,14 AUL model is better than ML’ for small n.
AUL vs UL 14,0 12,0 8.0 5.0 3,1 7.1 , .
AUL ve ML’ 13,2 12,0 7.2 2.5 0,12 1,10 AUL model is the best for small n.
AUL vs AUL 0.6 0,2 0,2 0,0 0,0 0,0

MZE | n=25 n=50 n=100 n=200 n=400 n=800 MAE | n=25 n=50 n=100 n=200 n=400 n=800
AUL vs ML 19.0 17,0 10,0 1,3 1.3 4,5 AUL vs ML 20,0 16,0 10,0 3.2 0.5 1,5
AUL wvs UL 6.0 7.0 10,0 11,0 8.0 6,0 AUL vs UL 3.0 4.0 2.0 5.0 4,0 7.0
AUL vs ML 15.0 7,0 3,0 0,1 2 4.4 AUL vs ML [4.0 8.0 3.0 0, 0,3 4.5
AUL vs AUL 0,2 0,0 1,0 1,0 0,0 1,1 AUL vs AUL 0,0 0,0 0,0 0,0 0,0 0,0

-S. Belharbi+, “Non-parametric uni-modality constraints for deep ordinal classification,” arXiv preprint arXiv:1911.10720, 2020.
-T. Albuquerque+, “Ordinal losses for classification of cervical cancer risk,” Peerd Computer Science, vol. 7, p. e457, 2021.
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