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CONTEXT

 Modern healthcare routinely generates massive, heterogeneous data:

EHRSs, Biological data, X-ray, Clinical notes, Treatments,...

Need for:
- BALANCE — Predictive power VS Explanaibility
- Accurate — To usefully guide decisions

- Explainable — Clinicians need transparent models to gain trust

 INTEGRATION of multiple data sources and multimodal data — Efficient




The Basque Country COVID-19 Cohort

Adult patients diagnosed with COVID-19 and admitted to Galdakao-Usansolo
Hospital's ED between March 2020 and January 2022 (N = 5,504)

= Tabular data:

- Sociodemographic (3 variables): age, sex and vaccination status

« Comorbidities (13 variables): Charlson index, and presence of
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comorbidities (heart failure, dementia, diabetes...)

- Laboratory (22 variables): Partial CO, and O, pressure, glucose...

« Image data: RAW & UNLABELED Frontal X-ray image of lungs

= Outcome : mortality status




OBJECTIVE

No longer in the urgency of developing predictive models for COVID-19 mortality

Rich data, valuable opportunity to develop/test methods and integration techniques

- Challenges:

Missing chest X-ray — 965/ 5,504

Unlabeled chest X-ray images — No reports, No class labels, No expert feedback
~40 mostly continuous tabular — Potentially non-linear relationships

Imbalanced outcome classes — <10% mortality rate

Trade off — Predictive performance vs. Explainability

- Objective: To investigate the predictive performance of COVID-19 death models

Single and multimodal approaches using chest X-ray images and EHR data
Models differ in their explainability capacities




METHODS: Model architectures (1st attempt) - clustering

Categorical (Tabular) Variable Representing X-ray Information:

» Gaussian Mixture Variational Autoencoders with a Convolutional Neural Network
architecture to classify frontal chest X-ray images into clusters

» Patients without X-ray images were assigned to a “missing value” category

Aim:

« To facilitate data integration across modalities

* To leverage the full cohort of >5,000 patients

Naive approach:. Clustering chest X-ray images of COVID-19 patients

without prior clinical knowledge is neither predictive nor explainable




METHODS: Model architectures — single modality

« EHR-only (Threshold): Cost-sensitive Lasso logistic regression with
0-degree spline to categorize variables for clinical interpretation

« Image-only: Adapted CheXNet architecture replacing its final classification
layer with a task-specific set of fully connected (dense) layers
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METHODS: Model architectures — single modality

« EHR-only (Threshold): Cost-sensitive Lasso logistic regression with
0-degree spline to categorize variables for clinical interpretation
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METHODS: Model architectures — single modality

 Image-only: Adapted CheXNet architecture replacing its final classification

layer with a task-specific set of fully connected (dense) layers

CheXNet Algorithm:

Predicts the probability of 14 disease categories from chest X-rays
Detects pneumonia at a level exceeding practicing radiologists
121-layer Convolutional Neural Network (CNN)

Trained on >100,000 frontal-view chest X-ray images across 14
disease categories (ChestX-ray14 dataset)

Transfert learning: pre-trained CheXNet adapted to predict
« The probability of 14 disease categories or
 The death

t N
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Output
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in our COVID-19 data [Rajpurkar, 2017]




METHODS: Model architectures — multimodal

 Disease concatenation: Cost-sensitive Lasso with 0-splines applied to EHR
data + 14 disease probability outputs from (unmodified) CheXNet

- Late fusion: Predicted probabilities from single modality models are inputs to:

1. A set of fully connected networks (NN) or
2. A logistic regression (LR)

Disease concatenation Late fusion (NN) Late fusion (LR)

Feature
Extracted feature
EHR Modality
O O =
. Image Modality
B Output




METHODS: Performance criteria

= Train (60%), validation (20%), and test (20%) stratified split of the data
= Predictive performance assessed on the test set:
- Area Under the Receiver Operating Characteristic Curve (AUROC)

- Area Under the Precision-Recall Curve (AUPRC)

= 95% Cls: bootstrap resampling with 1000 replicates

10



RESULTS: Descriptive statistics

Variable Total sample Non-deceased Deceased p-value
N, (%) 965 (100%) 901 (93.37%) 64 (6.33%)
Sociodemographic variables
Age 63 [54-72] 62 [53-71] 78 [69-85] <0.05
Charlson Index 1[0-2] 1 [0-2] 3 [1-5] <0.05
Sex at birth 0.108

Female 322 (33.4%) 307 (34.1%) 15 (23.4%)

Male 643 (66.6%) 594 (65.9%) 49 (76.6%)
Comorbidities
Heart failure 91 (9.4%) 69 (7.7%) 22 (34.4%)  <0.05
Cerebrovascular disease 102 (10.6%) 82 (9.1%) 20 (31.2%)  <0.05
Arterial hypertension 465 (48.2%) 422 (46.8%) 43 (67.2%)  <0.05
Dementia 17 (1.8%) 9 (1%) 8 (12.5%) <0.05
Diabetes <0.05

No 764 (79.2%) 724 (80.4%) 40 (62.5%)

Without chronic complications 163 (16.9%) 144 (16%) 19 (29.7%)

With chronic complications 38 (3.9%) 33 (3.7%) 5 (7.8%)
Kidney disease 128 (13.3%) 108 (12%) 20 (31.2%)  <0.05
Cancer 54 (5.6%) 48 (5.3%) 6 (9.4%) 0.28
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RESULTS:

EHR-only model
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RESULTS: Models performance

Late Fusion Approaches:
- Showed a higher AUPRC point estimate compared to single modality models
- However, variability was high (wide 95% Cls)
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CONCLUDING REMARKS

- Integrating multimodal data improves prediction - but also increases
complexity

« New open-source deep learning methods for medical imaging offer
exciting opportunities

« Simpler models (e.g., 0-degree splines) are well understood and mimic
clinical reasoning

« Methods developed here can be extended beyond COVID-19 to other
diseases

- Balancing accuracy and transparency remains the central challenge
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