

Balancing Predictive Performance and Explainability for Integrating Clinical, Biological, and Radiological Data in the Basque Country COVID-19 Cohort

Lander RODRIGUEZ-IDIAZABAL, Irantzu BARRIO, Jose Maria QUINTANA-LOPEZ

Univ Pais Vasco (SP)

Marta AVALOS-FERNANDEZ, Dylan RUSSON

Univ of Bordeaux (FR)

65th ISI World Statistics Congress

7 Oct 2025, The Hague, the Netherlands

CONTEXT

- Modern **healthcare** routinely generates massive, heterogeneous data: EHRs, Biological data, X-ray, Clinical notes, Treatments,...

Need for:

- **BALANCE** → Predictive power VS Explanability
 - **Accurate** → To usefully guide decisions
 - **Explainable** → Clinicians need transparent models to gain trust
- **INTEGRATION** of multiple data sources and multimodal data → Efficient

The Basque Country COVID-19 Cohort

Adult patients diagnosed with COVID-19 and admitted to Galdakao-Usansolo Hospital's ED between March 2020 and January 2022 (N = 5,504)

- **Tabular data:**
 - **Sociodemographic (3 variables):** age, sex and vaccination status
 - **Comorbidities (13 variables):** Charlson index, and presence of comorbidities (heart failure, dementia, diabetes...)
 - **Laboratory (22 variables):** Partial CO₂ and O₂ pressure, glucose...
- **Image data: RAW & UNLABELED** Frontal X-ray image of lungs
- **Outcome :** mortality status

[Quintana-Lopez, Rodriguez-Idiazabal, 2024]

OBJECTIVE

No longer in the urgency of developing predictive models for COVID-19 mortality

Rich data, valuable opportunity to develop/test methods and integration techniques

- Challenges:

- **Missing** chest X-ray → 965 / 5,504
- **Unlabeled** chest X-ray images → No reports, No class labels, No expert feedback
- ~40 mostly continuous tabular → Potentially **non-linear** relationships
- **Imbalanced** outcome classes → <10% mortality rate
- **Trade off** → Predictive performance vs. Explainability

- Objective:

To investigate the **predictive performance** of COVID-19 death models

- **Single and multimodal** approaches using chest **X-ray images and EHR data**
- Models differ in their **explainability capacities**

METHODS: Model architectures (1st attempt) - clustering

Categorical (Tabular) Variable Representing X-ray Information:

- Gaussian Mixture Variational Autoencoders with a Convolutional Neural Network architecture to classify frontal chest X-ray images into **clusters**
- Patients without X-ray images were assigned to a **“missing value” category**

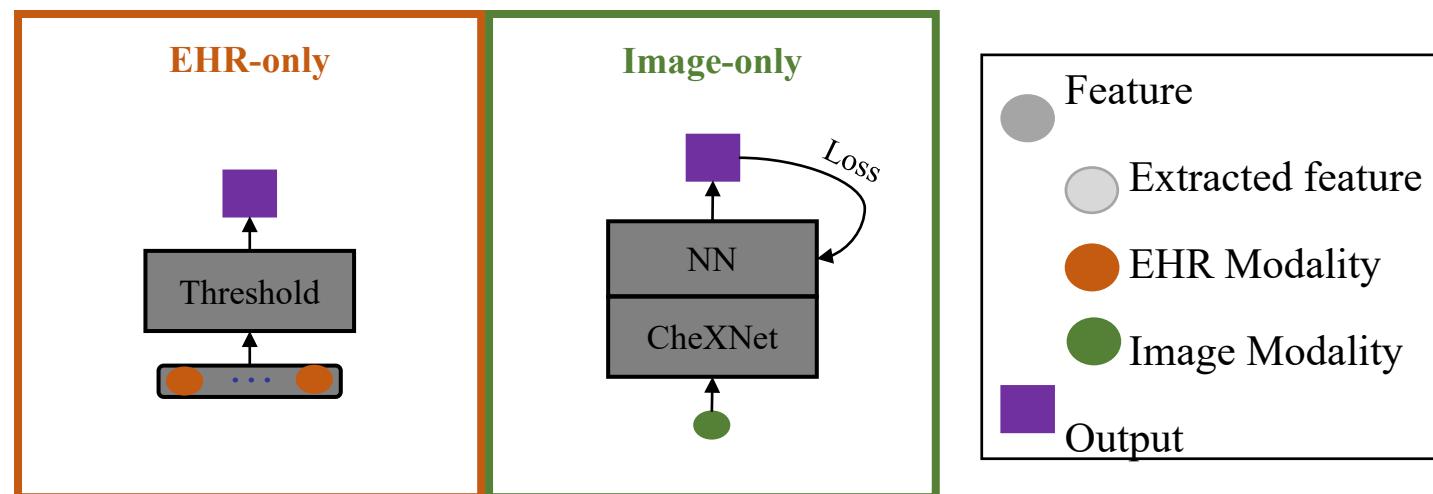
Aim:

- To **facilitate data integration** across modalities
- To leverage the **full cohort** of >5,000 patients

Naïve approach: Clustering chest X-ray images of COVID-19 patients **without prior clinical knowledge** is neither predictive nor explainable

METHODS: Model architectures – single modality

- **EHR-only** (Threshold): **Cost-sensitive Lasso logistic regression** with **0-degree spline** to categorize variables for clinical interpretation
- **Image-only:** Adapted **CheXNet architecture** replacing its final classification layer with a task-specific set of fully connected (dense) layers



METHODS: Model architectures – single modality

- **EHR-only** (Threshold): **Cost-sensitive Lasso logistic regression** with **0-degree spline** to categorize variables for clinical interpretation

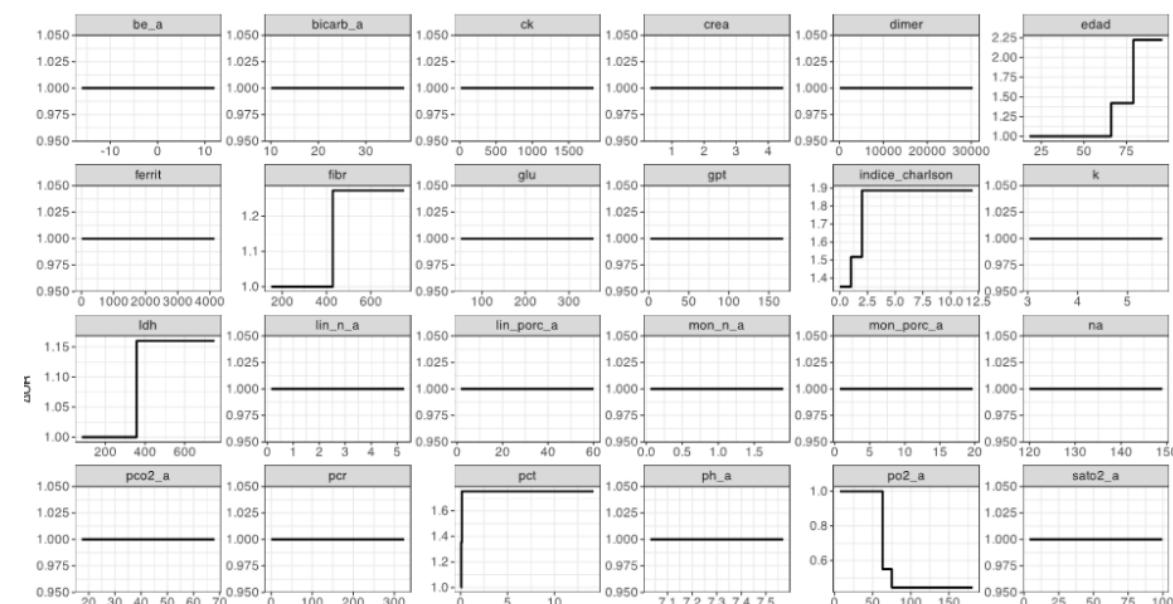
$$\max_{\beta} \left\{ \sum_{i=1}^n \omega_i \ln \frac{e^{y_i \sum_{j=1}^p \chi_{ij} \beta_j}}{1 + e^{\sum_{j=1}^p \chi_{ij} \beta_j}} - \lambda \|\beta\|_1 \right\}$$

With $\mathbf{X} = \{x_{ij}\}, i = 1, \dots, n; j = 1, \dots, p$ and
 q_{kj} the k -th percentile of $X_j, k = 1, \dots, k_j$

$$\chi_{ik}^j = \begin{cases} 1 & \text{if } x_{ij} > q_{kj} \\ 0 & \text{otherwise.} \end{cases}$$

$$\beta^j \in \mathbb{R}^{k_j} \text{ and } \|\beta\|_1 = \sum_{j=1}^p \|\beta^j\|_1 = \sum_{j=1}^p \sum_{k=1}^{k_j} |\beta_k^j|$$

$$\omega_i = \begin{cases} \omega & \text{if } y_i = 1 \\ 1 & \text{otherwise.} \end{cases}$$



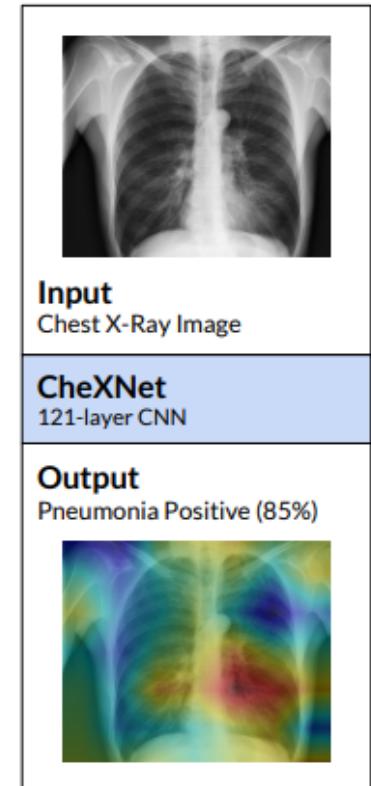
[Avalos, 2021]

METHODS: Model architectures – single modality

- **Image-only:** Adapted **CheXNet architecture** replacing its final classification layer with a task-specific set of fully connected (dense) layers

CheXNet Algorithm:

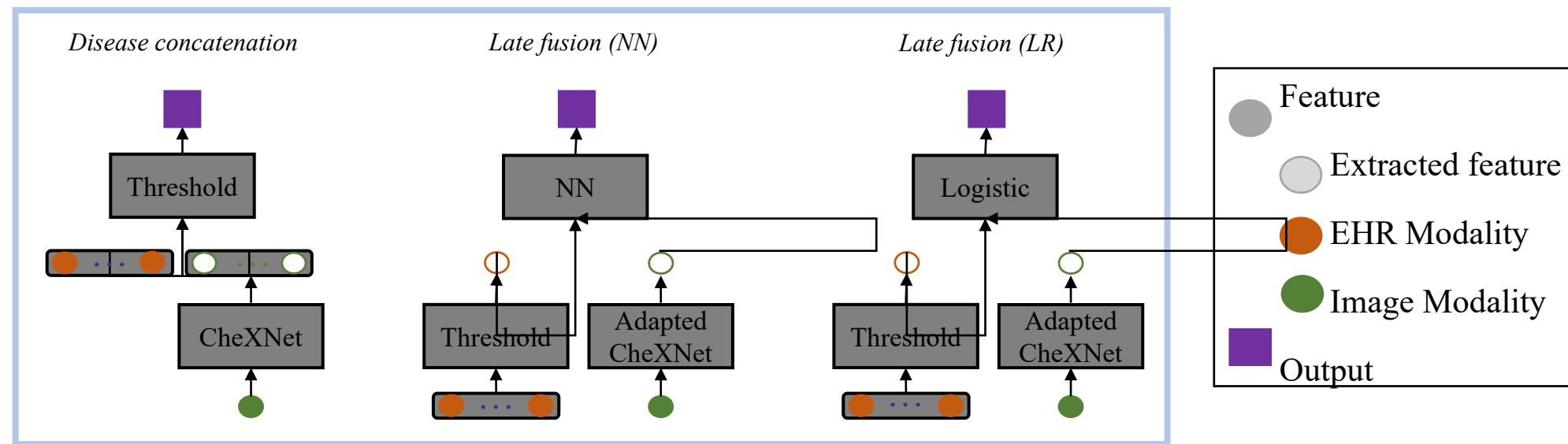
- Predicts the **probability of 14 disease categories** from chest X-rays
- Detects pneumonia at a level exceeding practicing radiologists
- 121-layer Convolutional Neural Network (**CNN**)
- Trained on >100,000 **frontal-view chest X-ray images** across 14 disease categories (ChestX-ray14 dataset)
- **Transfert learning:** pre-trained CheXNet adapted to predict
 - The probability of 14 disease categories or
 - The death in our COVID-19 data



[Rajpurkar, 2017]

METHODS: Model architectures – multimodal

- **Disease concatenation:** Cost-sensitive Lasso with 0-splines applied to EHR data + 14 disease probability outputs from (unmodified) CheXNet
- **Late fusion:** Predicted probabilities from single modality models are inputs to:
 1. A set of fully connected networks (NN) or
 2. A logistic regression (LR)



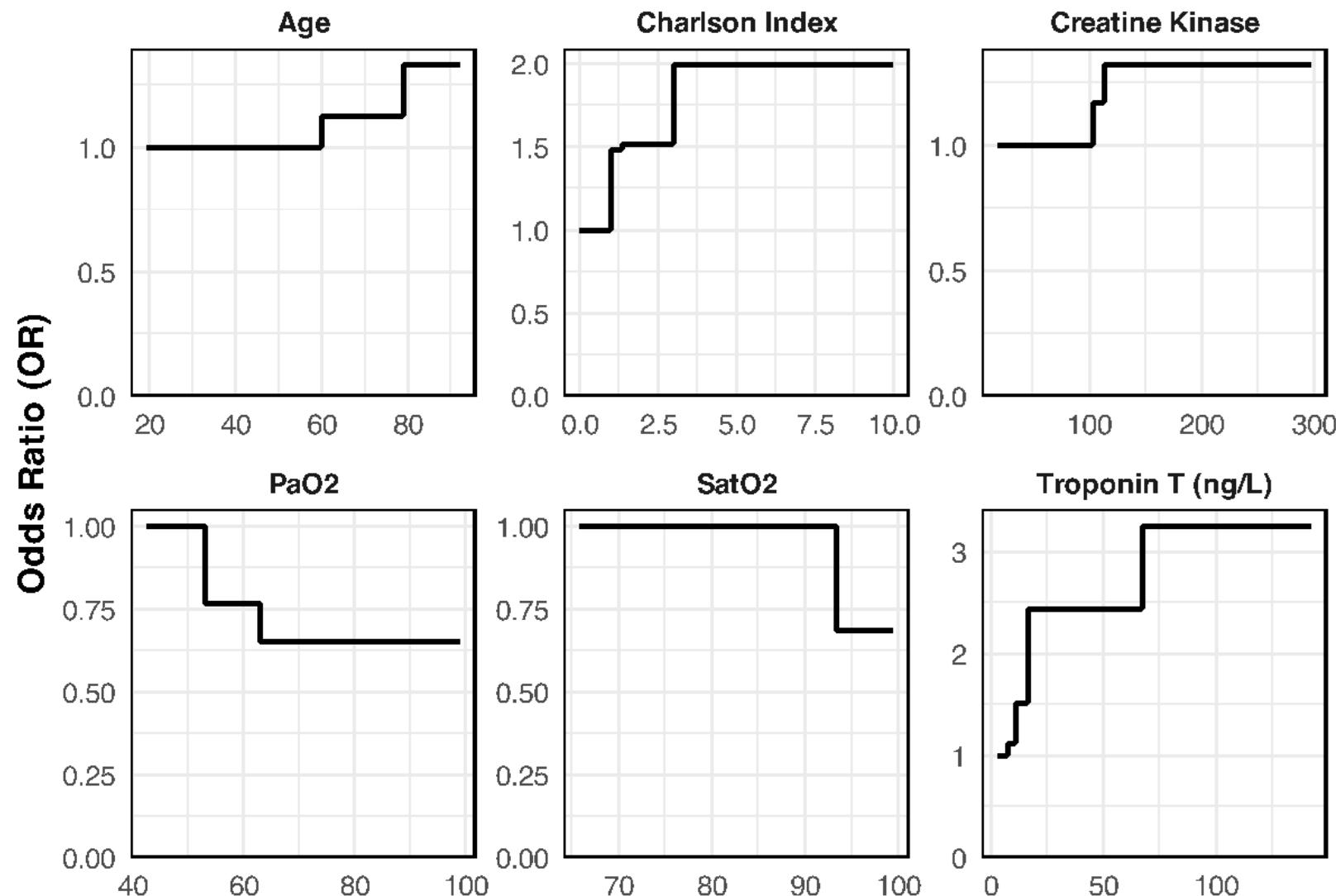
METHODS: Performance criteria

- **Train** (60%), **validation** (20%), and **test** (20%) **stratified** split of the data
- **Predictive performance** assessed on the **test set**:
 - Area Under the Receiver Operating Characteristic Curve (**AUROC**)
 - Area Under the Precision-Recall Curve (**AUPRC**)
- **95% CIs**: bootstrap resampling with 1000 replicates

RESULTS: Descriptive statistics

Variable	Total sample	Non-deceased	Deceased	p-value
<i>N, (%)</i>	965 (100%)	901 (93.37%)	64 (6.33%)	
<i>Sociodemographic variables</i>				
Age	63 [54-72]	62 [53-71]	78 [69-85]	<0.05
Charlson Index	1 [0-2]	1 [0-2]	3 [1-5]	<0.05
Sex at birth				0.108
Female	322 (33.4%)	307 (34.1%)	15 (23.4%)	
Male	643 (66.6%)	594 (65.9%)	49 (76.6%)	
<i>Comorbidities</i>				
Heart failure	91 (9.4%)	69 (7.7%)	22 (34.4%)	<0.05
Cerebrovascular disease	102 (10.6%)	82 (9.1%)	20 (31.2%)	<0.05
Arterial hypertension	465 (48.2%)	422 (46.8%)	43 (67.2%)	<0.05
Dementia	17 (1.8%)	9 (1%)	8 (12.5%)	<0.05
Diabetes				<0.05
No	764 (79.2%)	724 (80.4%)	40 (62.5%)	
Without chronic complications	163 (16.9%)	144 (16%)	19 (29.7%)	
With chronic complications	38 (3.9%)	33 (3.7%)	5 (7.8%)	
Kidney disease	128 (13.3%)	108 (12%)	20 (31.2%)	<0.05
Cancer	54 (5.6%)	48 (5.3%)	6 (9.4%)	0.28

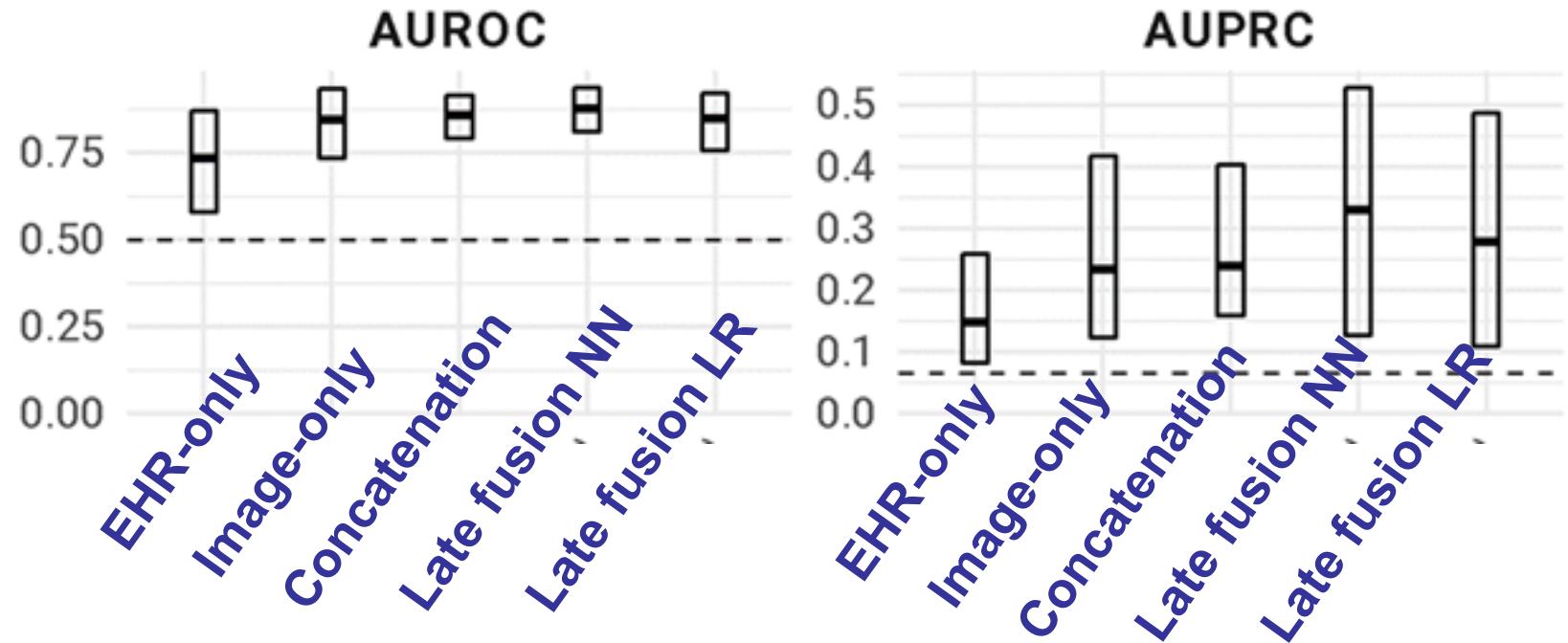
RESULTS: EHR-only model



RESULTS: Models performance

Late Fusion Approaches:

- Showed a **higher AUPRC** point estimate compared to single modality models
- However, variability was high (**wide 95% CIs**)



CONCLUDING REMARKS

- **Integrating multimodal** data improves prediction - but also increases complexity
 - New **open-source deep learning methods for medical imaging** offer exciting opportunities
 - Simpler models (e.g., 0-degree splines) are well understood and mimic **clinical reasoning**
 - Methods developed here can be **extended** beyond COVID-19 to other diseases
 - **Balancing accuracy and transparency** remains the central challenge
-

REFERENCES

[Quintana-Lopez, Rodríguez-Idiazabal, 2024]

Quintana-Lopez, Rodríguez-Idiazabal, Portuondo, García, Legarreta, Gascón, Larrea, Barrio & COVID-Health Basque Country Research Group (2024). Relevance of comorbidities for main outcomes during different periods of the COVID-19 pandemic. *Influenza and other respiratory viruses* <https://doi.org/10.1111/irv.13240>

[Avalos, 2021]

Avalos, Touchais, Henríquez-Henríquez (2021). Optimising Criteria for Manual Smear Review Following Automated Blood Count Analysis: A Machine Learning Approach. In: *Advances in Intelligent Systems and Computing*, vol 1372. Springer
https://doi.org/10.1007/978-3-030-73603-3_35

[Rajpurkar, 2017]

Rajpurkar, Irvin, Zhu, Yang, Mehta, Duan, Ding, Bagul, Langlotz, Shpanskaya, Lungren, & Ng (2017). CheXNet: *Radiologist-level pneumonia detection on chest X-rays with deep learning* [Preprint]. arXiv <https://doi.org/10.48550/arXiv.1711.05225>
