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CONTEXT

• Modern healthcare routinely generates massive, heterogeneous data: 

EHRs, Biological data, X-ray, Clinical notes, Treatments,… 

Need for: 

• BALANCE → Predictive power VS Explanaibility

- Accurate → To usefully guide decisions

- Explainable → Clinicians need transparent models to gain trust

• INTEGRATION of multiple data sources and multimodal data → Efficient
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Adult patients diagnosed with COVID-19 and admitted to Galdakao-Usansolo
Hospital’s ED between March 2020 and January 2022 (N = 5,504)

▪ Tabular data:
• Sociodemographic (3 variables): age, sex and vaccination status

• Comorbidities (13 variables): Charlson index, and presence of

comorbidities (heart failure, dementia, diabetes…)

• Laboratory (22 variables): Partial CO2 and O2 pressure, glucose…

▪ Image data: RAW & UNLABELED Frontal X-ray image of lungs

▪ Outcome : mortality status

The Basque Country COVID-19 Cohort

[Quintana-Lopez, Rodríguez-Idiazabal, 2024]
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No longer in the urgency of developing predictive models for COVID-19 mortality
Rich data, valuable opportunity to develop/test methods and integration techniques
- Challenges:

• Missing chest X-ray → 965 / 5,504
• Unlabeled chest X-ray images → No reports, No class labels, No expert feedback
• ~40 mostly continuous tabular → Potentially non-linear relationships
• Imbalanced outcome classes → <10% mortality rate
• Trade off → Predictive performance vs. Explainability

- Objective: To investigate the predictive performance of COVID-19 death models
• Single and multimodal approaches using chest X-ray images and EHR data
• Models differ in their explainability capacities

OBJECTIVE
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METHODS: Model architectures (1st attempt) - clustering

Categorical (Tabular) Variable Representing X-ray Information:
• Gaussian Mixture Variational Autoencoders with a Convolutional Neural Network

architecture to classify frontal chest X-ray images into clusters

• Patients without X-ray images were assigned to a “missing value” category

Aim:
• To facilitate data integration across modalities

• To leverage the full cohort of >5,000 patients

Naïve approach: Clustering chest X-ray images of COVID-19 patients

without prior clinical knowledge is neither predictive nor explainable
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METHODS: Model architectures – single modality

Feature

Extracted feature

EHR Modality

Image Modality

Output

EHR-only Image-only

CheXNet

NN
Threshold

. . .

• EHR-only (Threshold): Cost-sensitive Lasso logistic regression with
0-degree spline to categorize variables for clinical interpretation

• Image-only: Adapted CheXNet architecture replacing its final classification
layer with a task-specific set of fully connected (dense) layers
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METHODS: Model architectures – single modality

[Avalos, 2021]

• EHR-only (Threshold): Cost-sensitive Lasso logistic regression with
0-degree spline to categorize variables for clinical interpretation
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METHODS: Model architectures – single modality

CheXNet Algorithm:
• Predicts the probability of 14 disease categories from chest X-rays
• Detects pneumonia at a level exceeding practicing radiologists
• 121-layer Convolutional Neural Network (CNN)
• Trained on >100,000 frontal-view chest X-ray images across 14 

disease categories (ChestX-ray14 dataset)

• Transfert learning: pre-trained CheXNet adapted to predict
• The probability of 14 disease categories or 
• The death
in our COVID-19 data [Rajpurkar, 2017]

• Image-only: Adapted CheXNet architecture replacing its final classification
layer with a task-specific set of fully connected (dense) layers
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METHODS: Model architectures – multimodal

Feature

Extracted feature

EHR Modality

Image Modality

Output

Disease concatenation

Threshold

CheXNet

. . . . . .

Late fusion (NN)

NN

Adapted 
CheXNetThreshold

Logistic

Adapted 
CheXNetThreshold

Late fusion (LR)

. . . . . .

• Disease concatenation: Cost-sensitive Lasso with 0-splines applied to EHR
data + 14 disease probability outputs from (unmodified) CheXNet

• Late fusion: Predicted probabilities from single modality models are inputs to:
1. A set of fully connected networks (NN) or
2. A logistic regression (LR)
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METHODS: Performance criteria

▪ Train (60%), validation (20%), and test (20%) stratified split of the data

▪ Predictive performance assessed on the test set:

• Area Under the Receiver Operating Characteristic Curve (AUROC)

• Area Under the Precision-Recall Curve (AUPRC)

▪ 95% CIs: bootstrap resampling with 1000 replicates
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RESULTS: Descriptive statistics
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RESULTS: EHR-only model
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RESULTS: Models performance
Late Fusion Approaches:
▪ Showed a higher AUPRC point estimate compared to single modality models
▪ However, variability was high (wide 95% CIs)
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CONCLUDING REMARKS

• Integrating multimodal data improves prediction - but also increases

complexity

• New open-source deep learning methods for medical imaging offer

exciting opportunities

• Simpler models (e.g., 0-degree splines) are well understood and mimic

clinical reasoning

• Methods developed here can be extended beyond COVID-19 to other

diseases

• Balancing accuracy and transparency remains the central challenge
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