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1. INTRODUCTION

In the literature, the traditional asymptotic bias method uses Monte Carlo simulations

or bootstrap experiments to derive sensitivities related to panel data estimators and their

asymptotic bias properties by enlarging N or T , or both. This method tries to reduce the

estimator asymptotic bias to provide efficient estimators which are important for robust

statistical inference. Subsequently, these papers state a procedure to reduce asymptotic bias,

i.e., Hsiao and Zhang (2015), Abadie and Imbens (2011), Hsiao and Tahmiscioglu (2008),

Hsiao et al. (2002), and MacKinnon and Smith (1998).

In this literature, there are different asymptotic estimator bias properties depending on

initial assumptions, functional forms, sample size, endogeneity treatments, and Maximum

Likelihood Estimation (MLE), or Generalized Method of Moments (GMM) estimations.

For example, according to Hsiao (2003), if the outcome variable is fixed and the intercept

estimator measures individual specific effects, the MLE estimator is a covariance estimator.

This work finds that this covariance estimator is asymptotically normally distributed with

a mean of zero if N is fixed and T is large. Another example is provided by Hahn and

Kuersteiner (2002), who show that the covariance estimator is asymptotically biased of

order of the square root of N over T when both N and T approach infinity, provided that

the ratio of T over N approaches a constant different from zero. Arellano and Bond (1991)

find an efficient GMM estimator that is asymptotically unbiased if T is fixed, and N goes

to infinity. Alvarez and Arellano (2003) report an asymptotically biased estimator of order

of the square root of c∗, where c∗ lies between zero and infinity and converges to itself

when N tends to infinity.

Panel data involve two dimensions. The first is N , which represents the number of in-

dividuals, and the second is T , which represents the number of time periods. This paper

proposes a novel recursive bias method, which does not require enlarging panel data di-

mensions N or T , or both, to provide efficient estimators. That is to say, N or T , or both

remains fixed. This method applies to small-samples and treats bias as a type of serial cor-

relation problem. Recursively, it decomposes the estimator bias serial correlation problem

into systematic and random components, reducing in this way its bias toward zero.

Three competing methodologies for producing efficient estimators are reported and com-

pared in Table I. They applied MLE on a small-sample size of 60 observations. The first col-
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umn of Table I reports synthetic estimators computed with the novel recursive bias method.

The second column reports real data estimators using the expo-power utility method. The

third column reports Monte Carlo estimators computed with the traditional asymptotic bias

method. This comparison shows that the recursive bias method estimators gain efficiency

by displaying the smallest errors. The novel method requires less computational power and

time compared to the asymptotic bias method. The recursive bias method runs on personal

computers in five seconds without increasing the panel dimensions N or T , or both, while

the asymptotic bias method needs multiple processors in specialized setups, taking days,

weeks, or even months to execute. The asymptotic bias method is computationally expen-

sive in enlarging and repeating N or T , or both, and in inverting the projection matrix

multiple times. The recursive bias method is a feasible option for replacing the traditional

asymptotic bias method for robust statistical inference and decision making.

This paper is organized as follows, section 2 introduces two dynamic panel data model

assumptions. Section 3 provides a traditional asymptotic bias method representation. Here,

T is large, since it goes to infinity. Section 4 presents the novel recursive bias method.

Here, N or T remains fixed. Section 5 presents an application and comparison of different

estimators and methods in Table I. In section 6 the conclusions are put forward.

2. DYNAMIC PANEL DATA MODEL ASSUMPTIONS

Suppose that a dynamic panel data econometric model has the following form:

yit = αi + βyi,t−1 + uit, i= 1, . . . ,N, t= 1, . . . , T. (1)

where yit is the dependent variable, αi stands for individual fixed effects, β is an efficient

first differencing estimator or the "true parameter value", yi,t−1 is the dependent variable

with one time lag, uit is the error term, i represents the individual dimension, and t rep-

resents the time dimension. Here, the error term on equation (1) is equal to zero, as the

error term has not yet being computed from the estimation of this econometric model. It is

a convention to annotate the error term on the econometric model.

Once the dynamic panel data econometric model expressed on equation (1) is estimated,

it yields,

yit = α̂i + β̂yi,t−1 + ûit, i= 1, . . . ,N, t= 1, . . . , T. (2)
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where the hat over the estimators expresses that the estimation has being executed. For

example, ûit is the estimator for the error term expressed on the dynamic panel data econo-

metric model. Once the estimation is executed ûit is a residual vector computed from the

difference between yit and ŷit.1

The estimator β̂ has a serial correlation problem. This problem is due to individual spe-

cific effects present in α̂i and β̂ estimators. Since β̂ considers individual and time effects

and yi,t−1 has the two panel data dimensions i and t− 1. In equation (2) β̂ bias is a result

of double counting individual-specific effects.2

Assumption 1. uit in equation (1) is a random variable with distribution N(0, Iσ2u),

where I is the identity matrix. For the rest of estimators presented in this note, their first

and second moments fulfill normality conditions and their third and fourth moments are

finite.3

A modified omitted variable formula is used to represent the expected value of β̂ and its

bias, as follows:4

E[β̂|α̂i] = β +
cov[α̂i, yi,t−1]

var[α̂i]
ûit (3a)

After estimating equation (1), E[β̂|α̂i] expresses an expected conditional mean of β̂i given

α̂i , and
cov[α̂i, yi,t−1]

var[α̂i]
ûit is assumed to represent this estimator bias.5 Clearly, equation

(3a) is nonlinear in its bias component.

E[β̂|α̂i] = β + ξit (3b)

1The var-cov matrix for the residuals is computed as ûit times ûit transpose.
2This type of double counting is considered in MacKinnon et al. (2023). General panel VAR models are ana-

lyzed by Holtz-Eakin (1998).
3According to Douc et al. (2014) and Spanos (1999), fourth moment finiteness is associated with a stationary

solution in a strict-sense. In Arellano and Bond (1991), the fourth-order indicates a lower or faster convergence

to normality.
4As far as the author concerns, the celebrated omitted variable formula has not being criticized by presenting

the estimator as a function of observations.
5For Makowski et al. (2006) the model y = α1x1 + α2x2 + ε has the following omitted variable formula:

α̂1 =
∑N

i=1 x1iyi∑N
i=1 x2

1i

, and E(α̂1) = α1 +
∑N

i=1 x1iyi∑N
i=1 x2

1i

α2. He uses notation for deviations in small samples, and a

var-cov estimator representation.
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where ξit =
cov[α̂i, yi,t−1]

var[α̂i]
ûit is the estimator bias. This estimator bias will be treated

through a modified Beveridge and Nelson (1981) decomposition. This decomposition lin-

earizes the bias into two components, one systematic and the other random.

Assumption 2. ξit in equation (3b) is a bias serial correlation problem with two compo-

nents. This bias serial correlation problem components are shown next:

ξit = δi + ωit (4)

where δi is individual fixed effects or the bias systematic component represented by its

mean, ωit is the bias random component having a serial correlation problem. Once a mod-

ified Beveridge and Nelson (1981) decomposition is applied equation (4) has two compo-

nents.

3. THE TRADITIONAL ASYMPTOTIC BIAS METHOD

Assumption 2 applied to equation (4) identifies the systematic component as δi and the

random component as ωit. Here, ψ(L) is a moving average estimator sequence of ξit, i.e.,

ψ(1), · · · , ψ(T ). Thus,

ωit = ψ(L)ξit (5)

Here, ωit is expressed as a moving average polynomial of order T . Expanding the moving

average polynomial ψ(L) leads to:6

ωit = ψ(1)ξi,t−1 + ψ(2)ξi,t−2 + · · ·+ ψ(T )ξi,0 (6)

where ψ(1) represents a moving average estimator of order one, ψ(2) represents a mov-

ing average estimator of order two, and so on. Finally, ψ(T ) represents a moving average

estimator of order T . Plugging equation (6) into equation (5) and (4) yields:

ξit = δi + ψ(1)ξi,t−1 + ψ(2)ξi,t−2 + · · ·+ ψ(T )ξi,0 (7)

Then, equation (3a) can be rewritten as

E[β̂|α̂i] = β + δi + ψ(1)ξi,t−1 + ψ(2)ξi,t−2 + · · ·+ ψ(T )ξi,0 (8)

6The introduction of this notation helps in maintaining parsimony within this paper sections.
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The bias of β̂ is represented by δi + ψ(1)ξi,t−1 + ψ(2)ξi,t−2 + · · · + ψ(T )ξi,0. Hayashi

(2000) states that the Lindeberg-Levy Central Limit and the Multivariate Convergence in

Distribution Theorems find an estimator as sequences of random variables that converges in

distribution to x∼N(0,Σ), and
√
n(z̄n − µ)→

d
x only if x is efficient with an asymptotic

bias equal to zero. This section explains the traditional asymptotic bias method, where T is

large, since it goes to infinity.

lim
T→∞

(δi + ψ(1)ξi,t−1 + ψ(2)ξi,t−2 + · · ·+ ψ(T )ξi,0) = 0 (9)

If the above theorems hold then equation (8) reduces to E[β̂|α̂i] = β, where β is an efficient

estimator.

4. A NOVEL RECURSIVE BIAS METHOD

A novel method is proposed to find an efficient dynamic panel data estimator under

assumptions 1 and 2. Next, theorems 1 and 2 and their proofs describe the recursive bias

method.

THEOREM 1: A consistent and efficient synthetic estimator in the presence of specific

individual fixed effects correlation is obtained by estimating its bias components.

PROOF: Plugging equation (8) into equation (1) provides:

yit = αi + [β + δi + ψ(1)ξi,t−1 + ψ(2)ξi,t−2 + · · ·+ ψ(T )ξi,0]yi,t−1 + uit (10)

Distributing the yi,t−1 term gives:

yit = αi + βyi,t−1 + δiyi,t−1 + ψ(1)ξi,t−1yi,t−1

+ ψ(2)ξi,t−2yi,t−1 + · · ·+ ψ(T )ξi,0yi,t−1 + uit (11)

Collecting the individual-effects estimators in only one term, ηi = αi + δiyi,t−1 yields:7

yit = ηi + βyi,t−1 +ψ(1)ξi,t−1yi,t−1 +ψ(2)ξi,t−2yi,t−1 + · · ·+ψ(T )ξi,0yi,t−1 + uit (12)

7Here, δi is an individual fixed effects estimator. Although yi,t−1 contains both data panel dimensions, δi
considers only specific individual fixed effects. In fact, δi possesses two panel dimensions. This characteristic

posses a challenge to obtain an efficient estimator.
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Equation (12) represents the first iteration of the proposed method to separate and quantify

the bias components. Consider the term ψ(1)ξi,t−1yi,t−1. Its estimator can be decomposed

into systemic and random components using a modified Beveridge-Nelson decomposition,

as in equation (4).

E[ψ̂(1)|η̂i] = ψ(1) +
cov[η̂i, ξi,t−1yi,t−1]

var[ηi]
ûit (13)

Assumption 2 applied to equation (13) shows that the systematic component is ψ(1) and

the random component is cov[η̂i,ξi,t−1yi,t−1]
var[ηi]

ûit. Next, the analogs of equations (4)-(11) are

presented for the ψ(1) estimator. For simplicity and comparison, let the ψ(1) bias be rep-

resented as follows. The underline represents the first iteration.

ξ
it
=
cov[η̂i, ξi,t−1yi,t−1]

var[ηi]
ûit

Hence,

ξ
it
= δi + ωit (14)

ωit = ψ(L)ξ
it

(15)

ωit = ψ(1)ξ
i,t−1

+ ψ(2)ξ
i,t−2

+ · · ·+ ψ(T )ξ
i,0

(16)

ξ
it
= δi + ψ(1)ξ

i,t−1
+ ψ(2)ξ

i,t−2
+ · · ·+ ψ(T )ξ

i,0
(17)

E[ψ̂(1)|η̂i] = ψ(1) + δi + ψ(1)ξ
i,t−1

+ ψ(2)ξ
i,t−2

+ · · ·+ ψ(T )ξ
i,0

(18)

By symmetry the moving averages can be generalized for the following estimators of

ψ(2), · · · , ψ(T ). Two underlines represent the second iteration.

E[ψ̂(2)|η̂i] = ψ(2) + δ
i
+ ψ(2)ξ

i,t−2
+ ψ(3)ξ

i,t−3
+ · · ·+ ψ(T )ξ

i,0
(19)

...

E[ψ̂(T )|η̂i] = ψ(T ) + δ
i

T

+ ψ(T )ξ
i,0

(20)
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where δ
i

means a 2th iteration and δ
i

T

means a Tth iteration. Plugging equations (18); (19)

and (20) into equation (12) yields,

yit = ηi + βyi,t−1+

ψ(1) + δiyi,t−1 + ψ(1)ξ
i,t−1

yi,t−1 + ψ(2)ξ
i,t−2

yi,t−2 + · · ·+ ψ(T )ξ
i,0
yi,0+

ψ(2) + δ
i
yi,t−2 + ψ(2)ξ

i,t−2
yi,t−2 + ψ(3)ξ

i,t−3
yi,t−3 + · · ·+ ψ(T )ξ

i,0
yi,0+

...

ψ(T ) + δ
i

T

yi,0 + ψ(T )ξ
i,0
yi,0 + uit

(21a)

Again, collecting the individual effects in a single term, i.e., η
i
= ηi + δiyi,t−1 + δ

i
yi,t−2 +

· · ·+ δ
i

T

yi,0 leads to,

yit = η
i
+ βyi,t−1+

ψ(1) + ψ(1)ξ
i,t−1

yi,t−1 + ψ(2)ξ
i,t−2

yi,t−2 + · · ·+ ψ(T )ξ
i,0
yi,0+

ψ(2) + ψ(2)ξ
i,t−2

yi,t−2 + ψ(3)ξ
i,t−3

yi,t−3 + · · ·+ ψ(T )ξ
i,0
yi,0+

...

ψ(T ) + ψ(T )ξ
i,0
yi,0 + uit

(21b)

Now collecting similar terms together yields,

yit = η
i
+ βyi,t−1 + ψ(1) + ψ(2) + · · ·+ ψ(T )+

ψ(1)ξ
i,t−1

yi,t−1 + 2ψ(2)ξ
i,t−2

yi,t−2 + · · ·+ Tψ(T )ξ
i,0
yi,0 + uit (22)

Consider that ψ(1), ψ(2), · · · , ψ(T ) are individual fixed effects estimators. Consequently,

they are the individual means at each lag value. The moving average terms can be collected

with the specific individual-effects means, resulting in a single term, η
i
, that represents all

individual effects in equation (21), i.e., η
i
= η

i
+ψ(1)+ψ(2)+ · · ·+ψ(T ). Thus equation

(22) can be rewritten as:

yit = η
i
+βyi,t−1+ψ(1)ξi,t−1

yi,t−1+2ψ(2)ξ
i,t−2

yi,t−2+ · · ·+Tψ(T )ξ
i,0
yi,0+uit (23)

Equation (23) represents the second iteration of the proposed novel recursive bias method

to separate and quantify bias components. Q.E.D.
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THEOREM 2: A consistent and efficient estimator can be computed for any panel data

dimension size.

PROOF: Theorem 1 provides a recursive method for decomposing bias component esti-

mators and recursively converge them with their efficient estimators. Thus, the following

equality follows:

cov[η̂i, ξi,t−1yi,t−1]

var[η̂i]
ûit =[(

η
i
− αi

)
+
(
ψ(1)ξ

i,t−1
yi,t−1 + 2ψ(2)ξ

i,t−2
yi,t−2 + · · ·+ Tψ(T )ξ

i,0
yi,0

)]
(24)

where the left hand side is the estimator bias equation (3a), and the right hand side is the bias

systematic component: η
i
− αi, while the bias random component is: ψ(1)ξ

i,t−1
yi,t−1 +

2ψ(2)ξ
i,t−2

yi,t−2+ · · ·+Tψ(T )ξ
i,0
yi,0. Thus, after estimating equation (23), the following

subtraction can be applied to equation (3a):

E[β̂|α̂i] = β +
cov[α̂i, yi,t−1]

var[α̂i]
ûit

−
[(
η
i
− αi

)
+
(
ψ(1)ξ

i,t−1
yi,t−1 + 2ψ(2)ξ

i,t−2
yi,t−2 + · · ·+ Tψ(T )ξ

i,0
yi,0

)]
(25)

Hence, with this computation the estimator bias is reduced to zero, where β is an efficient

estimator. It is evident that panel dimensions remain unchanged. This means that there is

no need for either N or T , or both to be large. Therefore, the asymptotic bias properties are

not needed for the recursive bias method.

E[β̂|α̂i] = β (26)

Q.E.D.

5. ANALYTICAL FRAMEWORK, APPLICATION AND COMPARISON

The application uses the model of joint estimation of risk preference structure and tech-

nology using expo-power utility function (Saha et al. (1994)). This model has the flexibil-

ity to exhibit decreasing, constant or increasing absolute risk aversion and decreasing or

increasing relative risk aversion depending on estimators values. The following equations

(27-42) reproduce Saha et al. (1994) analytical approach equations.
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5.1. Analytical Framework

In what follows is presented the relevant equations.

U(W ) = Θ− exp(−βWα) (27)

where U(·) denotes the utility function, exp denotes exponential, and W is wealth. Estima-

tor restrictions of the expo-power utility function are Θ> 1 and αβ > 0.

For the expo-power utility function, the Arrow-Pratt measures of absolute and relative

risk aversion are respectively given by

A(W ) =−U ′′(·)/U ′(·) (28)

R(W ) =WA(W ) (29)

Under its estimator restrictions, the expo-power utility function exhibits DARA (Decreas-

ing Absolute Risk Aversion) if α < 1, CARA (Constant Absolute Risk Aversion) if α= 1,

and IARA (Increasing Absolute Risk Aversion) if α > 1, DRRA (Decreasing Relative Risk

Aversion) if β < 0, and IRRA if β > 0. Estimator Θ does not play any role in the charac-

terization of the risk preference structure.

Technology is given by the following production function,

Q̃= h(x) + g(x, ε) (30)

where x is an n× 1 vector of inputs, Q̃ denotes random output with h(x) : ℜn →ℜ, and

g(x, ε) : ℜn →ℜ. Random variable ε has support on ℜ, and it captures production uncer-

tainty.

Normalized random wealth, which is the sum of normalized random profit (π̃) and real

initial wealth (I), is given by

W̃ = π̃ + I = h(x) + g(x, ε)− rTx+ I (31)

where r denotes the n × 1 vector or normalized input prices and T superscript denotes

transpose. Using equation (31) the decision maker’s problem of choosing optimal input
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levels to maximize expected utility can be stated as,

max
x
H ≡E[U(W̃ )]

max
x
H ≡E[U(h(x) + g(x, ε)− rTx+ I)]

(32)

The n first-order conditions corresponding to n inputs are,

Hx ≡E[U ′(·){hx(·)− r+ gx(·)}] = 0 (33)

where 0 is an n × 1 vector of zeros, and the subscript x denotes derivatives. This set of

equations can be written more compactly as

hx(·)− r+Z = 0 (34)

where Z = E[U ′gx(x, ε)]/E[U
′]. The second-order sufficient condition of (33) is negative

definite,

HxxT (x
∗) = hxxT (x

∗) +Zx(x
∗) (35)

The first-order equations of (34) are,

r = hx(·) +Z + e (36)

where e denotes the vector of disturbances associated with ‘errors’ in optimization of the

jointly estimations of the production, utility, and probability density functions.

The empirical model is based on equation (36). The proposed distribution of random

variable in (30) is Weibull,

ε∼Ω(b, c) =
cεc−1

bc
exp

{
−
(ε
b

)c}
, +∞≥ ε≥ 0 (37)

where Ω(·) denotes the probability density function of ε. The shape of the Weibull p.d.f. is

determined by parameter c and its scale by b.

The production function, a combination of the Cobb-Douglas and exponential (CDE)

forms is,

Q̃=A
n∏

i=1

xaii + exp

{
n∑

i=1

mixi + ε

}
(38)
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where A, ai, mi, i = 1, . . . , n, are the 2n + 1 production technology estimators. In par-

ticular, if mj , the jth coefficient in the stochastic part of the function, is negative, then the

jth input is risk reducing in the sense that ∂V (Q̂)
∂xj

< 0, where V (·) denotes variance. The Z

term in the jth estimation of equation (36) can be written as,

Zj =

∫ ∞

o
αβWα−1 exp{−βWα}mj exp

{
n∑

i=1

mixi + ε

}
c

bc
εc−1 exp

{
−
(ε
b

)c}
dε∫ ∞

o
αβWα−1 exp{−βWα} c

bc
εc−1 exp

{
−
(ε
b

)c}
dε

(39)

Under (38), the hx(·) term for the jth estimation equation becomes

hxj =

aj

{
A

n∏
i

xaii

}
xj

(40)

Using (39) and (40), the tth observation on the jth equation in (36) can be reduced to,

rjt =

aj

{
A

n∏
i=1

xaiit

}
xjt

+

∫ +∞

o
Wα−1

t exp

{
n∑

i=1

mixit + ε− βWα
t −

(ε
b

)c
}
εc−1 dε∫ +∞

o
Wα−1

t exp
{
−βWα

t −
(ε
b

)c}
εc−1 dε

mj

+ ejt j = 1, . . . , n, t= 1, . . . , T. (41)

The system of n equations in (41) correspond to the number of observations. The log-

likelihood function of the Weibull distribution is

lnL(e/b, c) = T ln(c)− cT ln(b) + (c− 1)
T∑
t

ln εt −
(εt
b

)c
(42)
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5.2. Application

The empirical application uses data from a sample of Kansas wheat farmers. The re-

sults reject the null hypothesis of risk neutrality and suggest that Kansas farmers exhibit

decreasing absolute risk aversion and increasing relative risk aversion.

Table I presents three sets of estimators, which are computed under MLE and a small-

sample size of 60 observations. The first column is composed of synthetic estimators com-

puted using the novel recursive bias method.8 These synthetic estimators are taken from

the first column of Table 3 in Carbajal-De-Nova (2021). The second column in Table I is

the second set of estimators computed with real data and the expo-power utility method.

Real data means data collected from farm surveys and administered registers. These real

estimators are taken from the first column of Table 5 in Saha et al. (1994). The third column

on Table I reports the third set of estimators computed with the traditional asymptotic bias

method based on Monte Carlo simulations. They are drawn from the third column of Table

I in Saha et al. (1997).9

8The construction of these synthetic estimators is described in Carbajal-De-Nova (2021).
9The Monte Carlo simulation design is available in this paper.
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TABLE I

SYNTHETIC, REAL AND MONTE CARLO ESTIMATORS COMPARISON FOR THE EXPO-POWER AND

STOCHASTIC PRODUCTION FUNCTION

Estimates (Standard errors) [mean

scuare errors]

EP utility

parameter
Explanation

Joint est.a

Synthetic

Join esta

Real

Join est.b

Monte

Carlo

α α< 1→ DARA
0.36

(0.02E-11)

0.36

(0.0294)
-0.10

β β > 0→ IRRA
2.73

(0.01E-11)

2.73

(0.2201)
0.09

A
Parameters of

the non-

stochastic

part of CDEc

1.60

(0.00)

1.60

(0.15)

1.20

[0.00]

a1
0.25

(0.00)

0.25

(0.01)

0.29

[0.00]

a2
0.75

(0.00)

0.75

(0.01)

0.60

[0.01]

aExpected utility maximization model (unrestricted).
bMonte Carlo experiments for group one using design matrix A,

with 1,000 repetition sets of 60 observations. The initial values for

these estimators are 0.86, 0.83, 0.87, 0.86, 0.86.
cSubindex 1 refers to capital, and 2 to materials. DARA stands

for Decreasing Absolute Risk Aversion. IRRA stands for Increasing

Relative Risk Aversion. CDE is the production function, a combi-

nation of the Cobb-Douglas and exponential forms, α and β reveals

the risk preference structure.
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5.3. Estimators Comparison

A comparison is made for the three sets of estimators reported in Table I. The real estima-

tors by Saha et al. (1994) are the closest available estimates of the "true parameter value,"

since synthetic and Monte Carlo data do not have a real data generating process. The com-

parison of synthetic and Monte Carlo estimators against the "true parameter value" would

reveal the efficiency of each method. Synthetic and real estimators are identical, since their

difference is zero. Synthetic estimators standard errors are closer to zero “gaining effi-

ciency” and thus have a bias reduction. Real and Monte Carlo estimator coefficients are

quite dissimilar, where standard errors are not directly comparable with mean squared er-

rors. This comparison demonstrated that the novel recursive bias method delivers unbiased

estimators with identical coefficients to the "true parameter value."

Efforts to obtain unbiased estimators have been made by Abadie and Imbens (2011) in

an empirical setting. They compute bias adjusted covariance matching (bacm) and bias ad-

justed propensity score matching (bapsm) estimators for experimental and nonexperimen-

tal data (Monte Carlo experiments with 10,000 repetitions). They use panel data analyzed

originally by LaLonde (1986), with individual and time specific components, and a training

dummy variable. Their non-experimental estimators do not reproduce the "true parameter

value." Their bias reduction is small (around 0.01 percent) for one matching. For instance,

their Monte Carlo bacm (1.43) and bapsm (1.64) standard errors are bigger than those be-

longing to experimental estimates (0.84) and (0.81), respectively.

The Arellano and Bond (1991) Monte Carlo simulation uses the "true parameter value"

as seed. This value is 0.8 with a standard error of 0.048 (Table 4, column (c), first row).

However, its Monte Carlo estimator is not identical nor more efficient than its empirical

counterpart: 0.7827 with a standard error of 0.0582 (Table 1, third panel, column one, ninth

and tenth rows).

Buccola and McCarl (1986) used Monte Carlo experiments with 1,200 replications and

an execution time of twenty-five minutes to investigate small-sample properties of inputs

on yield production functions. Their Table 1 reports the "true parameter value" and Monte

Carlo estimators i.e., 10 and 10.01 respectively, and their corresponding standard errors i.e.,

0.71 and 1.23. Thus, Monte Carlo estimators do not replicate the "true parameter value,"

neither report a smaller standard error.
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6. CONCLUSIONS

Literature addressing a recursive bias method is scarce: Cornillon et al. (2014), Choi

and Yang (2021), MacKinnon et al. (2023), Arellano and Bond (1991), Hsiao and Zhang

(2015), Alvarez and Arellano (2003), Anderson and Hsiao (1981), Hsiao et al. (2002).

These papers focus on the traditional asymptotic bias method to find efficient estimators,

by increasing panel data dimensions N , T , or both. In contrast, the novel recursive bias

finds efficient estimators closer to the "true parameter value" without enlarging N or T , or

both. After analyzing Table I, it seems that the novel recursive fills a gap in the literature.

As a result, the novel method could be a feasible option to provide efficient estimators for

robust statistical inference and its decision making.
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