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Abstract 
Recent international trends in privacy-protecting techniques for official statistics 

include the use of perturbative methods. The U.S. Census Bureau is implementing 
perturbative methods based on the methodology of differential privacy, which was 
originally developed in the field of computer science in order to prevent “database 
reconstruction attacks”, where attackers attempt to identify personal information by 
combining multiple published statistical tables. The U.S. Census Bureau has created and 
published statistical tables that use differential privacy for the 2020 United States 
Census.   

Exploring the applicability of differential privacy techniques to Japanese official 
statistics is worthwhile both from the viewpoint of expanding the future scope of 
creation and publication of official statistical tables, and shaping the future direction of 
secondary use of official statistics. Several empirical studies have examined the 
potential of differential privacy as an anonymization method for detailed geographical 
data from the Japanese Population Census.  

This paper investigates the possibility of adapting differential privacy to cross-
tabulated data created using individual data from the 2020 Japanese Population Census, 
and conducts a comparative analysis of data usability at different geographical levels 
for perturbed statistical tables created based on differential privacy. 
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1. Introduction 
 
    Many national statistical agencies have actively adopted perturbative methods as 
privacy protection techniques when publishing official statistics. The U. S. Census 
Bureau has considered differential privacy as a countermeasure to database 
reconstruction attacks (Abowd (2018)). In database reconstruction attacks, attackers 
expose personal information by merging (seemingly privacy-protected) datasets 
generated from a database, setting up constraint satisfaction problems. Differential 
privacy provides the means to reduce the risk that the original database can be 
reconstructed. 

Prior to applying differential privacy to 2020 census data in preparation for 
publishing statistical tables, the U.S. Census Bureau used 2010 census data to 
investigate the practicality of differential privacy. Specifically, based on the top-down 
algorithm it adopted, the Bureau set a privacy loss budget ε to be consumed by 
publishing statistical tables, and examined how to appropriately allocate the parameter 
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ε at the geographical level (Garfinkel et al. (2019))1.  
In examining the applicability of differential privacy for Japanese official statistics, 

Ito et al. (2023) used individual data from the 2015 Japanese population census to 
quantitatively evaluate data utility after various differential privacy methods are applied 
to produce statistical tables at different geographical levels. Data utility was compared 
using mean absolute error (MAE) as the evaluation metric. The results showed that 
when differential privacy is applied to population census data, generating noise at the 
highest geographical level and then allocating it to the cells of statistical tables in a top-
down manner with proper adjustments produces more accurate figures than a bottom-
up manner which adds noise to the cells of aggregate data tables for the lowest 
geographical level and then aggregates the resulting figures to produce tables for a 
higher geographical level.  

However, Ito et al. (2023) only focused on the granularity of geographical levels 
as the basis of comparison, and further empirical research for investigating data utility 
also of higher-dimensional, differentially private statistical tables is needed. 

This study uses individual-level data from the 2020 Japanese Population Census to 
suggest a method for quantitatively evaluating the utility of differentially private 
aggregate data tables. It also evaluates the effect of adding variables and performing 
apportionment based on the distributional characteristics of variables on the utility of 
differentially private aggregate data tables. 
 
2. Assessing Utility for Differential Private Census Data    

 
There are several methods to evaluate utility for data created using disclosure 

limitation methods. Examples include MAE and RMSE, which are calculated as 
indicators to assess the extent of differences in distribution characteristics between 
aggregated data created from noise-added data and original individual data. When the 
methodology of differential privacy is applied, these indicators can be defined as the 
difference between the values based on original data and those with added noise 
generated by differential privacy. At the same time, utility metrics can also be used to 
evaluate values at different levels of granularity of geographical classifications, 
including the correlation between variables based on individual data and metrics 
calculated from aggregated data.  

When differential privacy methods are applied, data is created at specific 
geographical levels. Therefore, in order to ensure the most similar data characteristics 
for the aggregated tables created from the original individual data, the appropriate 
geographical level should be selected among the various geographical classifications. 
This suggests that attention should also be paid to the difference between the distribution 
characteristics of the aggregated data and those of the original individual data from the 
standpoint of both noise addition based on differential privacy and granularity of 
geographical classifications. 

For each of the geographical categories of different granularity, the correlation 
between variables based on individual data can be compared with that based on 
aggregated data. Robinson (1950) conceptualized the relationship between the 
distributional characteristics of aggregated data and those of the original individual data 
as the “ecological fallacy”. The ecological fallacy arises from inferring the relationship 

 
1 The top-down algorithm implemented by the Bureau produces statistical tables through the 
following process which includes the application of differential privacy. First, national-level 
aggregation is performed, noise is injected based on a mathematically optimized privacy loss 
budget (ε), and differentially private statistical tables are created. Next, state-level, noise-added 
differentially private statistical tables are created with consideration given to both the strength 
of privacy and data utility. Similarly, differentially private statistical tables are created for 
hierarchical geographical categories, namely at the county level, tract level, and block level, in 
that order (Ito and Terada (2020)). 



between individual-level socioeconomic attributes based on an ecological correlation 
between area-level characteristics (Robinson 1950). 

In evaluating the utility of differentially private aggregate data tables, taking into 
account geographical granularity, two types of errors must be considered: errors 
attributable to differential privacy which are errors between aggregate data with noise 
added for differential privacy and aggregate data created based on the original data and 
errors causing the ecological fallacy, i.e., differences between the distributional 
characteristics of the original data and the distributional characteristics of aggregate data 
for different geographical categories.  

Researchers obtain data with the most useful distributional characteristics by 
finding the combination of variables and geographical granularity (used in the aggregate 
data tables) which minimizes the sum of errors attributable to differential privacy and 
errors causing ecological fallacy. 

As the geographical granularity becomes finer, the distribution characteristics of 
the aggregate data table tend to become more similar to those of individual-level data, 
and ecological-fallacy errors are therefore smaller. However, because the frequencies 
of the cells in the aggregate data table are lower, if noise is added to each cell for 
differential privacy, the impact of the noise addition on the frequencies is relatively 
large. 
    It is necessary to formalize the sum of errors attributable to differential privacy and 
ecological-fallacy errors. Furthermore, a utility indicator is needed to quantitatively 
evaluate the sum of these two types of errors. 
 
3. Proof-of-Concept Experiment on the Application of Differential Privacy to 

2020 Census Data 
 

This experiment examines the relationship between geographical granularity and 
the variables used in cross-tabulated tables. In the experiment, individual data from the 
2020 Japanese Population Census is used. Various cross-tabulated tables for three 
variables including gender, age, and type of residence as well as tables aggregated by 
small regions with different levels of geographical granularity are created.  

The experiment also investigates how noise added based on the methodology of 
differential privacy affects the utility of the cross-tabulated tables. To achieve this, 
various differential privacy methods are applied to these tables. The experiment also 
examines the effects of adding new aggregation items or performing proration based on 
the distribution characteristics of survey items on the aggregated tables. For this, 
differentially private full cross-tabulated tables and prorated cross-tabulated tables 
containing gender (two categories), age (18 categories), and residential type (three 
categories) are created. 

 We use the following methods for implementing differential privacy: (a) Laplace 
mechanism (with negative value rounding), (b) bottom-up composition method, and (c) 
top-down composition method. Additionally, we use eight values for the privacy loss 
budget (ε): 0.1, 0.2, 0.7, 1, 1.1, 5, 10, and 20. To ensure that the geographical divisions 
are structured hierarchically, we set the following hierarchy: (A) prefectures, (B) 
municipalities, (C) towns/villages, and (D) basic units. For each geographical division, 
we calculate MAE and RMSE as indicators of the utility of the statistical values to which 
differential privacy is applied.  

 We apply the top-down method as follows. First, noise is added, and optimization 
is applied to the population of each prefecture, which is the top-level geographical 
classification, with the total population of Japan as the total constraint. Next, noise is 
added, and optimization is applied to the population of each municipality, using the 
refined population of each prefecture obtained in the previous step as the total constraint. 
The same process is repeated for the population of each town/village and basic unit. 

The procedure of experimental application of differential privacy to the 2020 Census 
data is as follows:  



(1) A cross-tabulated table using all variables for each geographical level (hereinafter 
referred to as the "full cross-tabulated table") is created.  
(2) All possible cross-tabulated tables using the same combination of variables as full 
cross-tabulated table are prepared and prorated based on the method of applying 
distribution from higher-level geographical classifications (hereinafter referred to as the 
“prorated cross-tabulated table"). 
(3) For each of (1) and (2), differential privacy methods are applied to cross-tabulated 
tables created for all types of geographical areas while varying the value of ε. 
(4) Cells in full cross-tabulated tables and those in the prorated cross-tabulated tables 
from the standpoint of effectiveness of differential privacy and ecological fallacy are 
compared. 
 
4. Experimental Results 

 
    Tables 1 and Tables 2 show the comparison between MAE calculated for full cross-
tabulated tables created using three-variable (gender, age, type of residence) and MAE 
calculated for prorated cross-tabulated tables for the prefecture, municipality, 
town/village, and basic units. In each table, “Laplace,” “BottomUp,” and “TopDown” 
refers to the Laplace mechanism (plus negative-value truncation), and bottom-up 
composition method, and top-down composition method. The values in bold indicate 
the differential privacy method with the smallest MAE under the given conditions. Also, 
a cell highlighted in light blue in a full cross-tabulated tables indicates that the MAE in 
the cell is smaller than the corresponding MAE in the relevant prorated cross-tabulated 
table. 
    Creating cross-tabulated tables using all variables tends to increase noise relatively, 
but among these, the MAE for the top-down approach was found to be generally smaller 
than the MAE for other methods. It was confirmed that as the geographical classification 
becomes larger in the order of basic unit district, town/village, municipality, prefecture, 
and nationwide, the relative noise assigned tends to increase. In the top-down approach, 
creating cross-tables using all variables generally demonstrated higher utility, whereas 
in the bottom-up approach and Laplace mechanism (with negative values rounded up), 
cross-tabulated tables created by allocating from higher-level categories generally 
showed better MAE results.    
    Focusing on the MAE at the basic unit level, it is interesting to note that, with some 
exceptions, when ε ≤ 1.1, the results obtained using the prorated method generally have 
a relatively smaller MAE than those obtained using any of the other methods. 
Conversely, when ε ≥ 5.0, regardless of differential privacy methods, the cross-tabulated 
tables created using all the target variables show a relatively smaller MAE and higher 
utility compared to the prorated cross-tabulated tables. 
 
5. Conclusions 

 
This paper explores the applicability of differential privacy methodologies to 

Japanese Census data and offers a preliminary analysis aimed at further investigating 
methods for evaluating their utility. Using aggregated tables created from individual-
level data from the 2020 Japanese Population Census, we quantitatively assessed the 
utility of various differential privacy implementation methods. 

When prorating was performed based on the distribution characteristics of survey 
items in higher-level geographical categories, it was empirically confirmed that the 
MAE of the aggregated tables created using certain differential privacy methods can be 
smaller than for full cross-tabulated tables created using all the target variables when ε 
≤ 1.1. On the other hand, the full cross-tabulated tables created using all variables show 
a relatively smaller MAE than the prorated cross-tabulated tables for any of differential 
privacy method used in this study when ε ≥ 5.0. 

For data to which differential privacy methods were applied, the results can 



potentially be affected by not only the noise introduced by the application of differential 
privacy but also the discrepancy between the distribution characteristics of the 
aggregated data subject to noise and the original individual data. Further consideration 
of evaluation methods from the perspective of ecological fallacy is required.  
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Table 1 Experimental Results: MAE for Full Cross-tabulated Tables by Gender, Age, 
and Type of Residence 

 

Table 2 Experimental Results: MAE for Prorated Cross-tabulated Tables by Gender, 
Age, and Type of Residence 

 

ε Method Nationwide Prefecture Municipality Town/Village Basic Unit District

(a)Laplace 9368343.77 199326.46 4938.51 91.30 5.16

(b)BottomUp 11415.90 2706.27 113.71 4.90 0.66

(c)TopDown 52.50 36.58 19.80 5.79 0.77

(a)Laplace 4580701.41 97461.73 2414.72 44.77 2.63

(b)BottomUp 6553.29 1865.22 79.71 3.41 0.51

(c)TopDown 24.88 18.30 11.55 3.80 0.72

(a)Laplace 1239727.50 26377.18 653.57 12.27 0.79

(b)BottomUp 2043.03 657.09 29.25 1.38 0.23

(c)TopDown 7.42 5.51 4.09 1.56 0.54

(a)Laplace 855047.25 18192.49 450.80 8.50 0.56

(b)BottomUp 1448.49 479.82 21.44 1.05 0.18

(c)TopDown 4.07 3.79 2.99 1.19 0.47

(a)Laplace 774578.91 16480.40 408.38 7.71 0.51

(b)BottomUp 1260.85 437.03 19.67 0.97 0.16

(c)TopDown 3.93 3.41 2.74 1.10 0.45

(a)Laplace 165950.78 3530.87 87.51 1.67 0.11

(b)BottomUp 305.43 109.69 4.99 0.27 0.04

(c)TopDown 1.05 0.79 0.67 0.33 0.17

(a)Laplace 82949.81 1764.89 43.74 0.84 0.06

(b)BottomUp 150.59 55.30 2.51 0.13 0.02

(c)TopDown 0.48 0.39 0.34 0.18 0.10

(a)Laplace 41467.23 882.28 21.87 0.42 0.03

(b)BottomUp 68.13 27.51 1.25 0.07 0.01

(c)TopDown 0.23 0.20 0.17 0.09 0.05

10

20

1

1.1

5

0.1

0.2

0.7

ε Method Nationwide Prefecture Municipality Town/Village Basic Unit District

(a)Laplace 910658.64 19375.72 484.49 11.14 0.78

(b)BottomUp 5915.24 1127.86 51.94 3.50 0.36

(c)TopDown 64.12 59.14 28.07 7.39 0.58

(a)Laplace 437610.58 9311.27 234.33 5.75 0.51

(b)BottomUp 2942.42 583.23 28.65 2.10 0.30

(c)TopDown 34.87 29.77 16.70 5.10 0.46

(a)Laplace 115895.64 2466.44 63.18 1.73 0.32

(b)BottomUp 999.59 208.31 10.71 0.81 0.26

(c)TopDown 10.76 8.53 6.09 2.20 0.31

(a)Laplace 79628.75 1694.99 43.66 1.23 0.30

(b)BottomUp 558.41 157.58 8.17 0.61 0.26

(c)TopDown 6.93 6.07 4.48 1.69 0.29

(a)Laplace 71933.97 1531.35 39.51 1.12 0.29

(b)BottomUp 635.96 145.43 7.59 0.57 0.26

(c)TopDown 6.23 5.43 4.17 1.58 0.29

(a)Laplace 14897.50 317.46 8.32 0.25 0.26

(b)BottomUp 133.98 38.98 2.09 0.15 0.25

(c)TopDown 1.50 1.25 1.05 0.48 0.26

(a)Laplace 7415.91 158.04 4.15 0.13 0.25

(b)BottomUp 59.51 19.66 1.07 0.08 0.25

(c)TopDown 0.78 0.62 0.54 0.27 0.25

(a)Laplace 3705.32 78.97 2.07 0.06 0.25

(b)BottomUp 28.72 9.93 0.54 0.04 0.25

(c)TopDown 0.35 0.32 0.28 0.15 0.25

10

20

1

1.1

5

0.1

0.2

0.7


