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Abstract

The emergence of Deep Learning techniques combined with Big Data al-
lows for the extraction of high-level semantic features directly from massive
volumes of data. While this paradigm has revolutionized Computer Vision
using natural RGB images, specialized domains such as Remote Sensing of-
ten lack massive labeled datasets. Consequently, training neural networks
in these fields requires methods designed to go beyond standard supervised
learning. In this context, the Brazilian Agricultural Census presents both
a significant challenge and a unique opportunity, covering 8.5 million km2

and over 5 million establishments. This work details a strategy using Remote
Sensing and Computer Vision for automated agricultural plot delineation. By
utilizing Census outcomes to guide crop mapping and yield estimation, while
simultaneously using automatic field boundary delineation as input for Census
fieldwork, this framework enables the collection of high-quality ground truth
data. The proposed methodology is capable of transforming and improving
the production of official statistics across Brazil’s diverse biomes. To demon-
strate the robustness of the approach, we provide a detailed analysis of results
from two representative municipalities.

1 Introduction

The agricultural sector is a cornerstone of the Brazilian economy, representing nearly
25% to 30% of the national GDP and playing a vital role in global food security
[5, 2, 12]. With the capacity to provide food, fiber, and bioenergy for approximately
800 million people, Brazil has established itself as a global leader in the sector.
However, a significant gap persists: the lack of a robust, official monitoring system
for agricultural activities. Currently, the predominance of private initiatives limits
widespread access to evidence-based technologies and fails to meet the rigorous
requirements for producing official national statistics.

This work proposes leveraging the 12th Agricultural Census as a transformative
catalyst for the production of official agricultural statistics in Brazil. We outline
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Figure 1: The diversity of Brazilian biomes and the scale of territorial monitoring
[13]

2



a comprehensive framework for data generation, methodological approaches, and
the orchestration necessary to support a modern, timely information system. The
primary objective of this study is to present a strategic roadmap for modernizing
Brazilian agricultural statistical production.

The task of monitoring Brazil’s agricultural landscape is inherently multifaceted,
shaped by immense territorial scale and environmental diversity. As shown in Figure
1, the country comprises six distinct biomes: Amazon, Cerrado, Caatinga, Atlantic
Forest, Pantanal, and Pampa. Each biome exhibits unique vegetation patterns, sea-
sonality, and varying degrees of anthropogenic pressure. Consequently, monitoring
efforts require algorithms specifically calibrated to the ecological and social nuances
of each region.

Beyond geographic diversity, complex agricultural dynamics further complicate
analysis. The prevalence of double and triple cropping—such as the sequential
planting of soy, corn, and rice on the same plot within a single year—demands
high-resolution temporal models capable of distinguishing between multiple crop
cycles. Furthermore, persistent cloud cover in critical regions like the Amazon and
the Cerrado during rainy seasons creates significant blind spots in optical satellite
data, presenting a major technical hurdle for continuous land-use monitoring.

In addition to environmental factors, land fragmentation and administrative gaps
pose significant challenges. Brazil’s rural landscape is a mosaic of millions of prop-
erties ranging from small-scale family farms to vast industrial estates. Although the
National Rural Environmental Registry (CAR) is a vital tool, the absence of a fully
integrated and verified administrative record complicates data cross-referencing and
accountability.

Finally, technical capacity and resource accessibility remain critical barriers.
There is a persistent skill gap within public institutions, characterized by a shortage
of personnel trained in complex Geographic Information Systems (GIS) and Artifi-
cial Intelligence (AI). This is exacerbated by the prohibitive costs of high-resolution
imagery and specialized hardware/software, which often limit the institutional reach
of advanced monitoring technologies.

Synthesis Ultimately, the challenge of monitoring Brazilian agriculture tran-
scends mere geographic size; it is a convergence of environmental heterogeneity,
intensive production systems, and structural bottlenecks. Any effective solution
must be scalable, adaptable to regional specificities, and resilient enough to operate
amidst data gaps and institutional constraints.

2 Proposed Methodological Framework: An In-

tegrated Cycle of Earth Observation and Field

Enumeration

To address the challenges of scale and dynamism inherent in Brazilian agriculture,
this work proposes a cyclical and integrated framework that fuses Artificial In-
telligence (AI), Remote Sensing (RS), and in-situ data collection. Unlike
traditional linear pipelines, where fieldwork and digital analysis are often treated as
separate silos, the proposed architecture establishes a continuous feedback loop. As
can be seen in Figure 1, the workflow is anchored by the automated delineation of
agricultural plots, which serves as the common spatial unit for both the Agricultural
Census and continuous crop monitoring.
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Figure 2: Schema for the information production.

2.1 Workflow Description

The process begins with AI Field Boundary Delineation (FBD). Utilizing
medium-resolution satellite imagery and specialized field boundary delineation
models, the system automatically infers the geometry of agricultural plots. This
vector layer serves as the spatial backbone of the entire system, feeding into two
distinct but interconnected operational streams:

1. Census & Field Calibration: The inferred boundaries provide enumerators
with a pre-mapped “digital twin” of the territory. During the Agricultural
Census, field agents validate these boundaries and attribute specific produc-
tion data to them, explicitly recording what is produced (crop type) and
the volume produced (yield). This effectively transforms the Census from
a mere statistical survey into a massive campaign of ground-truth generation.

2. Crop Mapping & Yield Estimation: Simultaneously, these boundaries
define the areas of interest for temporal spectral analysis. Within each delin-
eated plot, algorithms analyze time-series data—including the Normalized
Difference Vegetation Index (NDVI) [19], the Enhanced Vegetation
Index (EVI) [11], and Synthetic Aperture Radar (SAR) backscatter
[20]—to classify crop types and estimate yields, free from the noise of mixed
pixels at the edges.

The cycle closes with Continuous Fieldwork. Discrepancies between model
predictions (e.g., low confidence in crop classification) trigger targeted field inspec-
tions. The data collected in these missions verifies the inference and, crucially, pro-
duces new labeled samples to retrain and refine the AI models, creating a virtuous
cycle of active learning.

2.2 Advantages and Strategic Benefits

The adoption of this circular framework offers significant advantages over traditional
methods:

• Spatial Consistency: By using FBD as the input for the Census, we en-
sure that statistical data is intrinsically linked to physical geography. This
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eliminates the disconnect between administrative records and the actual land
use.

• Resource Optimization: The system directs human effort where it is most
needed. Instead of sweeping entire regions blindly, field teams can be deployed
specifically to validate areas with high model uncertainty or rapid land-use
change.

• Temporal Granularity: While the Census provides a decennial snapshot,
the “Crop Mapping & Yield Estimation” branch allows for seasonal or even
monthly updates of agricultural production, providing policymakers with near
real-time data.

• Evolving Accuracy: The feedback loop ensures the system is anti-fragile; it
improves with use. As the model encounters new biomes or crop varieties, the
continuous injection of validated field data mitigates model drift.

2.3 Challenges and Critical Bottlenecks

Despite its potential, the implementation of this framework imposes non-trivial chal-
lenges:

• Domain Shift and Generalization: A boundary delineation model trained
on the geometric fields of the Center-West (Cerrado) may struggle to gen-
eralize to the irregular, fragmented plots of the Northeast (Caatinga) or the
South. Ensuring model robustness across diverse biomes requires sophisticated
domain adaptation techniques.

• Computational High-Availability: Processing petabytes of imagery to up-
date boundaries and classifications on a continental scale demands a robust,
high-performance computing infrastructure (HPC) and optimized orchestra-
tion pipelines.

• Synchronization Latency: The lag between identifying an anomaly via
satellite and deploying a field team must be minimized. If the crop cycle ends
before validation occurs, the ground truth is lost, breaking the feedback loop.

3 Field Boundary Delineation (FBD)

The accurate delineation of agricultural field boundaries is the cornerstone of our
proposed monitoring framework. It defines the fundamental spatial unit for subse-
quent census enumeration and yield estimation. To address the challenge of segment-
ing diverse agricultural landscapes across Brazil, we employed a state-of-the-art Deep
Learning approach, combining high-resolution architectures with self-supervised pre-
training strategies.

3.1 Data Curation and Pre-processing

High-quality input data is critical for training robust segmentation models. Our
dataset comprises three distinct components:
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3.1.1 Earth Observation Imagery

Input data consists of medium-resolution optical imagery from the Sentinel-2 con-
stellation. To mitigate the persistent cloud cover typical of tropical regions and
ensure temporal consistency, we constructed monthly mosaics. Specifically, we uti-
lized the median pixel composition technique over the time series individually for
July, August, and September 2023. This temporal window captures critical pheno-
logical stages for winter crops and preparation for summer planting. The median
composite approach effectively filters out transient noise (clouds and shadows) while
preserving the spectral integrity of the agricultural features.

3.1.2 Ground Truth and Annotations

The supervised component of our model relies on a proprietary dataset of un-
precedented scale produced by the Brazilian Institute of Geography and Statistics
(IBGE). This dataset contains over 600,000 manually annotated polygons, validated
by technicians with local domain expertise. To ensure a rigorous evaluation of the
model’s generalization capabilities, we implemented a spatial stratification based on
experts’ directions. Municipalities used for training were separated from those used
for testing, preventing autocorrelation leakage and ensuring that test metrics reflect
true performance in unseen territories.

3.1.3 Benchmarking Data

For comparative analysis, we utilized the VARDA Foundation Global FieldID dataset1

(July 2023 snapshot). This external dataset serves as a baseline to benchmark our
model against global standards for field boundary delineation.

3.2 Architecture

Standard Convolutional Neural Networks (CNNs)[15] for segmentation, such as U-
Net[18] or ResNet-50 [10], typically employ an encoder-decoder structure that down-
samples the input to extract semantic context, recovering spatial resolution only in
the final stages. This process often results in the loss of fine spatial details, lead-
ing to “blurred” boundaries—a critical failure mode for cadastral applications. To
overcome this limitation, we adopted the High-Resolution Network (HRNet) [21].
The core advantage of HRNet is its ability to maintain high-resolution representa-
tions throughout the entire forward pass. It achieves this by connecting high-to-low
resolution convolution streams in parallel and repeatedly exchanging information
across resolutions (multi-scale fusion). This architecture allows the model to cap-
ture robust semantic features (from low-resolution streams) without sacrificing the
spatial precision required to delineate narrow boundaries between adjacent plots
(from high-resolution streams), as presented in Figure 3.

Complementing this architectural choice, we developed a proprietary self-supervised
pre-training method designed to optimize the network’s initialization. This novel
approach enables the model to learn robust feature representations from unlabeled
data before the fine-tuning stage. The specific impact of this method on segmenta-
tion performance, particularly in challenging biomes, constitutes a core contribution
to the process and will be presented in the results section.

1https://fieldid.varda.ag/hub/downloads
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Figure 3: The proposed execution pipeline: from temporal pre-processing of
Sentinel-2 mosaics to high-fidelity segmentation using HRNet.

3.3 Self-Supervised Pre-training (SSL)

To mitigate the domain shift across biomes and improve model generalization, we
implemented a Self-Supervised Learning approach. The literature on Representation
Learning via SSL is extensive and broadly categorized into three primary streams:

1. Transformation Prediction-based SSL: Approaches that learn represen-
tations by solving pretext tasks related to geometric or radiometric transfor-
mations [16, 17, 7];

2. Similarity Learning-based SSL: Methods focused on contrastive learning,
aiming to maximize agreement between differently augmented views of the
same data point while distancing others [3, 1, 4];

3. Masked Image Modeling (MIM): A generative paradigm where the model
learns to reconstruct masked portions of the input image, encouraging the
capture of dense contextual features [8, 6, 22].

Leveraging this theoretical foundation, our pipeline utilizes a diverse dataset
comprising agricultural landscapes from both Brazil and Europe to pre-train the
network backbone, ensuring robust feature extraction before fine-tuning on the spe-
cific IBGE annotations.

4 Operational Tests and Results

The evaluation of the proposed framework was conducted to assess not only the
pixel-level accuracy but, more importantly, the instance-level reliability required
for a National Census. We compared our proposed method against two baselines:
the VARDA global foundation model and a standard HRNet trained via fully
supervised learning without SSL pre-training.

4.1 Qualitative Analysis

The visual inspection of the segmentation results, presented in Figure 4, reveals
the impact of the domain-specific design. In regions characterized by high geo-
metric irregularity and small-scale farming, such as the Northeast of Brazil, the
global baseline (VARDA) frequently fails to detect boundaries, merging adjacent
smallholder plots into single amorphous regions (under-segmentation).

In contrast, the proprietary model demonstrates a superior ability to delineate
complex boundaries. The Self-Supervised Learning (SSL) pre-training effectively

7



allows the model to distinguish between subtle textural changes—such as the tran-
sition from a fallow field to native vegetation—even when spectral differences are
minimal. This results in sharper boundary definitions and a significant reduction in
blob-like artifacts common in standard semantic segmentation.

(a) An example of the mask on the left, and the predictions on the right.

(b) A second example of the mask on the left, and the predictions on the right.

Figure 4: Visual comparison of segmentation results. Note how the proposed method
preserves the boundary integrity of small, irregular plots where the baseline (left)
tends to merge them. Predictions are semantically close to the ground truth.

4.2 Evaluation Metrics

To rigorously assess the performance of the proposed framework, we employed a com-
prehensive set of metrics divided into two distinct categories: Pixel-Level Metrics
and Instance-Level Metrics. While the former serves as a general proxy for seg-
mentation quality, the latter is crucial for this study as it aligns more closely with
human perception and the specific requirements of the Agricultural Census (e.g.,
distinguishing adjacent plots).
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4.2.1 Pixel-Level Metrics

These metrics evaluate the classification accuracy of individual pixels, ignoring the
concept of distinct objects. We report:

• Jaccard Index (IoU): Reported in both its binary and weighted varia-
tions, measuring the overlap between the predicted segmentation mask and
the ground truth.

4.2.2 Instance-Level Metrics

Given that the primary goal is to delineate individual agricultural plots, instance-
level metrics are prioritized in our analysis (Section 4.3). Unlike pixel metrics,
these indices penalize the merging of neighboring fields (under-segmentation) or the
fracturing of a single field (over-segmentation).

Standard Instance Metrics: We utilize the standard COCO metrics [9]:

• Average Precision (AP):Measures the precision of detection at various IoU
thresholds.

• Average Recall (AR): Measures the proportion of ground truth objects
correctly detected.

Note on Metric Prioritization: In the context of field boundary delineation, missing
a plot is often more detrimental than slightly over-estimating boundaries. Therefore,
Average Recall (AR) is considered the most critical metric for our comparisons.
Higher values of AP and AR indicate better performance.

Segmentation Consistency Metrics: To capture specific geometric errors,
we adopted the metrics [14]:

• Global Over-Segmentation (GOS): Quantifies the degree to which single
plots are incorrectly split into multiple fragments.

• Global Under-Segmentation (GUS): Quantifies the merging of distinct
adjacent plots into a single object.

• Global Total-Segmentation (GTS): A combined error metric.

For GOS, GUS, and GTS, lower values indicate better performance. These met-
rics provide a granular understanding of the model’s topological accuracy, offering
insights that approximate visual validation by human experts.

4.3 Quantitative Performance

Table 1 details the quantitative performance across five municipalities representing
distinct agricultural realities. A key aspect of our evaluation is the breakdown of
performance by instance size, where AR50 (S) measures recall for small plots (area
pixels) and AR50 (M) for medium plots (area between and pixels).
Impact on Family Farming and Smallholdings: A crucial finding for the Brazil-
ian context is the performance on small agricultural plots. Considering that over 70%
of Brazil’s agricultural holdings are family-based—often characterized by smaller,
fragmented areas—the model’s ability to recover these specific instances is vital.
Our method demonstrates a consistent and significant advantage over the VARDA
baseline in the AR50 (S) metric across all municipalities. For instance, in Ibiporã,
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Source Jacc.(w) GOS ↓ GUS ↓ AP50 ↑ AR50 ↑ AR50 (S) ↑ AR50 (M) ↑

Chorozinho, CE

VARDA 0.777 0.064 0.117 0.004 0.027 0.022 0.053

HRNet 0.935 0.067 0.035 0.135 0.243 0.213 0.364

Ours 0.937 0.039 0.044 0.216 0.341 0.324 0.393

Jaboticabal, SP

VARDA 0.838 0.106 0.107 0.397 0.580 0.526 0.610

HRNet 0.882 0.121 0.073 0.618 0.666 0.588 0.795

Ours 0.927 0.061 0.051 0.759 0.828 0.783 0.848

Irapuã, SP

VARDA 0.900 0.058 0.060 0.456 0.645 0.611 0.666

HRNet 0.955 0.031 0.026 0.723 0.765 0.719 0.842

Ours 0.956 0.032 0.024 0.726 0.812 0.797 0.804

Pitangueiras, SP

VARDA 0.884 0.070 0.072 0.498 0.670 0.612 0.705

HRNet 0.941 0.038 0.036 0.742 0.777 0.703 0.873

Ours 0.952 0.028 0.030 0.788 0.833 0.787 0.878

Ibiporã, PR

VARDA 0.877 0.072 0.075 0.207 0.399 0.338 0.481

HRNet 0.934 0.069 0.042 0.440 0.548 0.474 0.618

Ours 0.946 0.056 0.034 0.523 0.682 0.621 0.786

Table 1: Detailed performance comparison. Arrows indicate whether lower (↓) or
higher (↑) values are better. (S) and (M) denote Small and Medium instances.

the AR50 (S) jumps from 0.338 (VARDA) to 0.621 (Ours), and in the challenging
landscape of Chorozinho, it rises from a negligible 0.022 to 0.324. This highlights
that our approach does not merely optimize for large, easy-to-detect monocultures
but provides the necessary granularity to include family farming in the automated
census pipeline.
Robustness to Domain Shift: The generalizability of the model is most evident
in Chorozinho (CE). Here, the domain shift causes the VARDA baseline to col-
lapse (AP50 of 0.004). While the supervised HRNet recovers some capability, our
method achieves a further substantial leap, validating that Self-Supervised Learn-
ing is essential for generalizing to the diverse biomes of Brazil where labeled data is
scarce.
Boundary Precision and Segmentation Quality: Beyond detection, the topo-
logical quality of boundaries is superior. In technified regions like Jaboticabal and
Pitangueiras, our method consistently yields the lowest Global Under-Segmentation
(GUS) scores (e.g., 0.030 in Pitangueiras vs. 0.072 for VARDA). This low GUS in-
dicates that the model successfully delineates adjacent fields rather than merging
them, a critical requirement for accurate area estimation and land tenure mapping.
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5 Conclusion and Strategic Outlook

The modernization of Brazil’s National Statistical System requires more than just
digitalization; it demands a structural integration of advanced data science with the
capillarity of field enumeration. This work not only validated a robust Deep Learning
model for Field Boundary Delineation (FBD) but also established a comprehensive
Integrated Cycle of Earth Observation and Field Enumeration.

Our results unequivocally demonstrate that the proposed framework, powered by
High-Resolution Networks (HRNet) and Self-Supervised Learning (SSL), overcomes
the limitations of global baselines, particularly in fragmented landscapes like the
Caatinga. However, the core contribution lies in the methodological orchestration:
by using these automated plots as the “spatial backbone” for the 12th Agricul-
tural Census, we ensure spatial consistency between administrative records and
physical land use.

This approach transforms the Census from a static survey into a dynamic engine
for ground-truth generation, where the Census enables resource optimization. The
resulting feedback loop validates the AI boundaries, and the AI guides the fieldwork
optimization and continuous model refinement. By adopting this “Divide and Con-
quer” strategy, we pave the way for the next phase of the roadmap: orchestrating
the Crop Mapping and Yield Estimation pipeline. Consequently, future work
will address three strategic pillars:

1. A complete and detailed analysis covering all Brazilian biomes and the
consolidation of the large-scale training set currently under development;

2. An extensive benchmark comparing the proposed framework against other
state-of-the-art segmentation methods using the proprietary dataset;

3. The development of downstream applications utilizing these plots for crop
mapping, yield modeling, and precise agricultural land use area es-
timation.

References

[1] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsuper-
vised learning of visual features by contrasting cluster assignments. NeurIPS,
33:9912–9924, 2020.

[2] CEPEA. Pib do agronegócio brasileiro, 2025.
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