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Abstract 

Measuring carbon contents reliably, for products, firms and industries, is key for identifying transition 
risks. The new G20 Data Gaps Initiative asks for collecting emission data and multiregional IO tables 
to enable the calculation of aggregate carbon contents. What sectoral distinctions do we need, what 
level of granularity? What is the role of international linkages? Do we need information on technology? 
How can statistical data be used in carbon accounting? Based on IO tables and company level data 
from the United States, I build up a micro simulation environment that can act as a laboratory for an-
swering these questions. The data base consists of almost 5000 units located in the United States and 
enables a rather complete tracking of private economy value chains. The analysis takes a focus on 
indirect emissions and carbon contents.  
 
First results indicate that, for levels of disaggregation typical for real world IO data, the within-sector 
heterogeneity of carbon contents is very high in some industries. Exclusive use of aggregate IO data 
is not warranted, not even as starting value for iterative carbon accounting procedures. However, sta-
tistical data can be very useful in providing starting values for inputs from industries with low heteroge-
neity, such as many service industries, in cases where direct information is missing. They may also be 
used to approximate indirect emissions, when company level information on direct emissions is availa-
ble. With the upcoming reporting requirements in place, this will be a standard case.  
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Harnessing the Power of Input-Output Analysis  

for Sustainability 

Simulation based on US data to inform aggregate statistics 

1 Introduction 

Carbon contents are a key input for all sorts of allocation decisions, for consumers, investors 

and government agencies, and for the reliable identification of transition risks. Carbon con-

tent disclosures and estimations can come on various levels: national, sectoral, group and 

single company, installations and – without a time dimension – the product level. Quite gen-

erally, a major problem for estimating carbon contents are Scope 3 emissions: the carbon di-

oxide emitted for the production of intermediate inputs. Producers may know their inputs, but 

they still need good estimates of the carbon contents of these inputs unless there is direct in-

formation from providers. In trade policy, it is extremely important to reliably assess the car-

bon content of imports, in order to avoid carbon leakage.  

 

Input-Output (IO) models provide the natural basis for organising the available information. 

On a sectoral basis, they take account of all production interlinkages – at least conceptually – 

using data that is available in most countries, often in a harmonised way. Combining the In-

put-Output matrix with sectoral information on direct emissions, one can readily track those 

emissions over the entire value chain up to the point of final use. Statisticians spend consid-

erable resources to make this information available and to keep it up to date.  

 

Within the new G 20 Data Gaps Initiative (DGI) framework,2 Recommendation 1 on Green-

house gas emission accounts and national carbon footprints asks countries and International 

Organisations for enhancing IO tables and emission statistics in such a way that consistent 

data is available for all major economies: regarding sector definitions, interlinkage infor-

mation, information on import and export of intermediary inputs and direct emission statistics 

for sectors.  

 

In order to contribute to this work stream, the project presented here looks for how aggregate 

measurement and IO tables can best be developed as an important source for firm level and 

product level estimates. The following issues need to be addressed: 

 

 Sector level information in both emission statistics and IO need to be refined in busi-

ness areas with high carbon intensity and with large heterogeneity. In both respects, 

energy, industrial production and agriculture stand out against service industries such 

as education, insurance and finance; 

 IO sector definitions need to fit available data on carbon emissions and energy use, 

to make efficient use of existing information; 
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 It is important that sector definitions be geared to emerging mandatory disclosure 

rules for companies, as these rules comprise rankings against peer groups of compa-

nies, themselves defined on a sectoral level; 

 Information on production interlinkages is to be combined with thorough information 

on international trade.  

 

Specifically, I investigate the use of aggregate statistics for firm level and product level analy-

sis for the case of the USA. The Bureau of Economic Analysis (BEA) works out extremely re-

fined IO tables. Roughly every 5 years, benchmark statistics with no less than 405 industries 

and product groups are produced, in addition to the annual tables for 71 industries. In addi-

tion, the coverage of US companies in micro level databases on carbon emissions is gener-

ally much better than for any other nation. Information on trade interlinkages and emissions 

are available for a reduced set of sectors from OECD IO tables.  

 

The rest of this paper is structured as follows. Section 2 describes the idea of setting up a 

simulation lab as a tool for designing and evaluating aggregate statistics. Section 3 shows 

how the data base is set up, using micro data from information providers and combining 

these with rather disaggregated industry level information on production interaction. This can 

be used to study the information content of more aggregated statistical information. The main 

challenge is to fit the micro level data into the structure of the existing information on interac-

tions. Section 4 then introduces the relevant measurement concepts and the framework 

needed for computing carbon contents from data on direct emissions and production interac-

tions. Section 5 gives a descriptive view of the data. The preliminary look has a focus on di-

rect and indirect emissions and the resulting carbon contents. For many industries, compa-

nies are very heterogeneous in their direct emissions even at the lowest level of aggregation.  

 

Ultimately, section 6 gives a first and as yet incomplete attempt to assess the predictive use 

of aggregate level statistical information for assessing the carbon content of output. I distin-

guish the direct use of industry level data as a predictor from the use in a unit level carbon 

accounting framework. The former means, for example, using industry level information for 

evaluating the carbon footprint of asset portfolios. The latter indicates the use of industry 

level information as a substitute of missing direct information on elements of the value chain. 

Given the high within-sector heterogeneity of carbon contents in some industries, the exclu-

sive use of aggregate IO data is not warranted, not even as starting value for iterative carbon 

accounting procedures. On the other hand, statistical data can be useful in providing starting 

values for inputs from industries with low heterogeneity, such as many service industries, or 

with a low share in total input, when direct information is missing. Ideally, accountants have 

unit level information on the direct emissions of suppliers, e.g. from ESG reporting, and only 

need to fill up information gaps regarding indirect emissions. 

2 A simulation lab  

I start with micro level information on company emissions. Trucost Environmental Data has 

sectoral classifications for the companies that is closely related to the BEA sectoral divisions 



for Input Output tables. Both are based on the NAICS system of company classification. The 

micro database contains information on direct emissions and energy use, together with infor-

mation on the sector and turnover. The data base consists of about 5000 units, almost exclu-

sively from the United States and Canada. It allows a rather complete tracking of private 

economy value chains 

 

Using sector level information matching what is available in the micro data, one can construct 

survey weights for units. With these weights, I can build a micro simulation of the US econ-

omy that reproduces the sectoral structure, the aggregate emissions and the known produc-

tion interactions. To a much more limited degree, international linkages can be taken into ac-

count using the aggregated OECD IOCIO tables. To create firm specific variations, emis-

sions, output and production interlinkages can be disturbed by white nose shocks. Micro 

level carbon contents are calculated using the methodology developed and explained in von 

Kalckreuth [2022a, 2022b].  

 

This micro-simulation is a laboratory to assess various questions of measurement re-

lated to the DGI Recommendation mentioned above, specifically: 

 

• How important are granular sectoral distinctions in areas of activity where emissions 

are heterogeneous and/or high? 

• How important is an explicit account of international interlinkages?  

• How well can sectoral data serve as proxies for the carbon content of company level 

output or products?  

• How informative are they as inputs in carbon accounting?  

 

Based on the knowledge of the simulated “truth”, it is possible to compute the average error 

associated with any measurement method. This amounts to setting up an infrastructure that 

will enable us to discuss measurement issues consistently and on a quantitative basis.  

3 Building the data base 

The principal goal in setting up the data base is to reconstruct and simulate the value chains 

of production, making use of the detailed BEA Input Output Table with its 405 industries. To 

this end, it is important to find micro level representation for as many BEA 405 industries as 

possible. I start by working out a correspondence table between the Trucost classification 

and BEA 405. Both are based on NAICS. Not for all BEA 405 industries there are counter-

parts in the Trucost classification and vice versa. In cases where a BEA 405 industry has no 

counterpart in the Trucost data, I assign companies from closely related classes within the 

same BEA 71 grouping. Therefore, a given company may be used as representative for 

more than one BEA 405 class. Thus, for a suitable assignment, it is important to capture the 

structure and heterogeneity of direct emission intensities and the use of energy (Scope 2 

emission intensities). The structure of production interactions will be borrowed from IO tables 

and will be different according to BEA 405 industry. 

 



I concentrate on observations from 2020. If for a given company there is no observation for 

2020, I take the latest observations from the period 2016 and after. The sectors are filled us-

ing companies from the United States and Canada. Only if there is no such company availa-

ble, companies from other parts of the world are being used as sector representatives, with a 

preference for European firms. The resulting micro level database consist of 4,988 units, with 

the following regional representation:  

 

Table 1: Regional composition of simulation micro data base 

Region Freq. Perc. Cum. 

Europe 69 1.38 1.38 

Asia / Pacific 68 1.36 2.75 

Africa / Middle East 4 0.08 2.83 

USA and Canada 4,846 97.15 99.98 

Latin America and Caribbean 1 0.02 100.00 

Total 4,988 100.00  
 

The data on direct emissions and Scope 2 emissions for the 4,988 units come from 3818 dif-

ferent companies. The data set has representatives units for 389 out of 405 detailed level in-

dustries and 67 out of 71 summary level industries. The micro data is on listed companies, 

thus it misses all government activity, private households, religious organisations and inde-

pendent artists, writers and performers. Apart from this, the coverage is complete.  

 

This information is linked to Input Output Accounts data from BEA3. First, I generate symmet-

ric industry by industry direct requirement matrices from the Commodity by Industry direct re-

quirement matrix and the Industry by Commodity transformation matrix4. For every industry, 

this matrix indicates the value of inputs from any other industry needed to generate one dol-

lar’s value of output. The last detailed level direct requirement matrix dates from 2012. This 

detailed level matrix is extrapolated to 2020 using summary level matrices for 2012 and 

2020.5 In a small number of cases, some adjustments were necessary to prevent the value 

added becoming too small.  

 

The resulting input-output matrix is “blown up” to the micro level by randomly assigning to 

each company one representative from each sector from which it receives inputs. Two units 

in the same sector may thus be linked to companies with rather different carbon intensity. 

The resulting 4988 x 4988 interaction matrix is modified by making direct use of data on en-

ergy use. The micro data has information on Scope 2 (first tier) carbon intensity. Assuming 

that this type of indirect emission comes mostly from electricity, the Scope 2 data is con-

verted to unit specific input coefficients for electricity, using the weighted average direct car-

bon intensity of electricity producers in the Trucost data.6 For consistency reasons, I set up a 

notional electricity distribution agent that buys all electricity produced among the units in the 

                                                
3
 See BEA Input Output Accounts Data, downloaded 17.03.2023 and before.  

4
 See the note Mathematical Derivation of the Total Requirements Tables for Input-Output Analysis, BEA 2017 

5
 A detailed level matrix for the year 2017 is about to be published by the BEA and will allow a better approximation.  

6
 Again, manipulating the requirement coefficients makes adjustments necessary in some cases. 

https://www.bea.gov/industry/input-output-accounts-data
https://apps.bea.gov/industry/pdf/TotalRequirementsDerivation.pdf


data base and sells it to the users of electricity. With this mechanism, the resulting Scope 2 

emissions in the simulation are equal to the data provided by Trucost by definition. 

4 Measurement concepts: indirect emissions and carbon content7 

Carbon content is defined recursively: it is the sum of direct emissions attributed to a product 

and the carbon content of all inputs, covering indirect emissions. Indirect emissions are the 

result of direct emissions in a chain – or rather a fabric – of other production processes. 

Those production interlinkages are key for the consistent treatment of indirect emissions. IO 

analysis is designed for this type of interlinkages, and in fact it has been used in tackling the 

issue of attributing resource consumption to final output at the sectoral level since the 1970s.  

4.1 An IO view 

To fix ideas, consider the following. In production planning, every process is defined by a bill 

of material (BoM) that specifies all inputs, plus a route sheet that explains how to combine 

them. A complex production process may be decomposed into several stages. Consider the 

BoM of product k,  

  1 2 'k k k kKa a aa …  , 

with kia  being the quantity of good i that enters the production process. There are entries for 

all input goods in the economy, most of them with a value of zero, of course. Let the amount 

of GHG emitted directly be given as kd . Let scalar ic  be the carbon content of good i, the 

quantity of GHG that is emitted in the production of one unit. List the carbon contents of all 

input goods in a vector as well: 

  1 2 'Kc c cc …  . 

The carbon content of product k is then given as the sum of direct and indirect emissions. Im-

portantly, we do not add a definition for indirect emissions, but simply define them recursively 

as the carbon content of inputs: 

 'k k k k i kii
c d d c a   c a  .       (1) 

Indirect emissions are the direct emissions at earlier stages of the value chain. The equation 

is both perfectly general and encompassing. It relates to products and activities and – for a 

given time span – to enterprises and sectors as well. 

 

As it stands, the equation is a definition. It helps us understand the problems associated with 

gathering and processing information. For actual computation, all the ic  corresponding to the 

BoM of product k are required. If these are known, we can calculate the carbon content of 

product k in a straightforward way from direct emissions and the BoM. This is like computing 

the energy content of food: it is enough that producers know the composition of their product 

and the energy content of the ingredients. How can carbon contents of outputs be calculated 

in a world where not all inputs carbon contents are known? Product carbon contents are in-

terdependent – the value for any product will depend on the value of all inputs.  
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4.2 A reduced form for product carbon contents 

If the relevant elements of c are unknown, we can use equation (1) recursively and try to 

compute the carbon content involved, going up the value chain from more complex interme-

diate inputs down to primary and primitive inputs. The structure is well known from linear pro-

duction planning and IO analysis, pioneered by Wassily Leontief, and it was indeed the same 

author who first proposed using IO models for analysing pollution generation associated with 

inter-industry activity.8 Conceptually, we can solve for the carbon content of all products sim-

ultaneously. Let  

 1 2 KA a a a…  

be the matrix of the BoMs for all output goods, 1,…,K. With d  being the column vector of the 

associated direct emissions, one may write: 

' ' ' c d c A .         (1)’ 

Reordering and postmultiplying the “Leontief inverse”  
1

I A  yields:  

 
1

' '


 c d I A .        (2)  

The carbon contents (product k and all the others) result from their own direct emissions and 

the direct emissions of all the intermediate goods used for their production by intermediation 

of a matrix derived from the BoM that reflects the interlinkages in production. If the coeffi-

cients in the carbon content equation refer to empirical production technologies actually be-

ing used to produce goods, 1, …, K, it can be taken for granted that the inverse exists and all 

its elements are non-negative. 

 

As simple and beautiful as this relationship is, it is not possible to use it directly. Matrix A  

comprises the BoMs for all products in the economy, including those that have been im-

ported, and if a certain input is produced using two different technologies, it should actually 

have two separate entries. Meanwhile, vector d  collects the direct emissions that character-

ise all of these processes. Except for simple cases, this cannot be dealt with at the micro 

level. Von Kalckreuth [2022a] shows that this is not necessary. Producers do not have to be 

aware of all the stages of the value chain – they only need to know their own technology and 

the carbon contents of the inputs as provided by their immediate suppliers. Just as the price 

mechanism is able to process an enormous amount of information in a decentralised way, 

there are ways to make the coordinated exchange of information between producers do the 

rest of the work. With the E-Liability carbon accounting approach, Kaplan and Ramanna 

[2021a, 2021b] have suggested a process that enables the necessary information exchange. 

One question this paper tries to answer is where initial values for an encompassing system 

of carbon accounting may come from.  
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The formulations are equivalent. For IO analysis in general, see Miller and Blair [2022], and specifically Chapter 10 for envi-
ronmental IO analysis. Suh [2010] is a collection of extensions and applications in the field of industrial ecology. 



5 A look at the data 

At the time of writing this draft, the construction work for the data base is not yet finished. 

Specifically, the micro information have yet to be linked to aggregate data. However, it is very 

interesting to look at the heterogeneity on the micro level. Using relationship (2) on the micro 

data on direct emission intensities and the micro level requirement coefficients in the simula-

tion universe, I calculate the “true” unit specific carbon contents, with the associated indirect 

emission intensities. The same could be achieved by using relationship (1)’ iteratively. Table 

2 gives some descriptive statistics: on sales and on direct emissions, indirect emissions and 

carbon contents – the latter three both weighted and unweighted.  

 

To convey an idea of industry heterogeneity, Table 3 gives weighted means of direct emis-

sions and carbon content (the sum of direct and indirect emissions) for three BEA 71 indus-

tries: 11CA ‘Farms’, 22 ‘Utilities’ and 325 “Chemical products”. The table renders the aver-

ages of direct emissions and carbon contents on the level of the BEA 71 aggregate and the 

BEA 405 industries. The averages are weighted by sales. These tables can by no means in-

terpreted as valid statistical information. Indirect emissions are simulated, the assignment of 

suppliers to producers is random and in many of the BEA 405 cells there are not more than 

one or two units. However, they give an impression of the type of heterogeneity involved. 

The direct emission intensities in the various modes of running a farm are surprisingly di-

verse. It is interesting to see how in much of the chemical industry direct emissions are domi-

nated by indirect emissions. The example of “utilities” as a compound of electricity, gas distri-

bution and water / sewage shows how badly the coarser sectoral classification may be 

geared to the need of assessing emission intensities.  

 

Table 2: Descriptive statistics 

a) Unweighted     
Variable Mean Std dev Min Max 

Sales (k USD) 4,782.3 21,313.7 0.0 523,964.0 

Dir emission int. g/USD 117.4 598.8 0.0 22,366.0 

Indir emission int, g/USD 174.4 213.2 4.3 2,340.0 

Carbon content, g/USD 291.8 679.1 5.0 23,590.4 

     
b) Weighted by sales     
Variable Mean Std dev   
Sales (k USD) 99,754.8 132,451.8   
Dir emission int. g/USD 107.3 477.2   
Indir emission int, g/USD 156.6 200.3   
Carbon content, g/USD 263.9 554.6   

     
4,988 Observations on all variables    

 

 

  



Table 3: Weighted averages of direct emission intensities and carbon contents  

in three BEA 71 industries 
 

 

 

To gain an insight into the variability on the micro level, we may first look at BEA 71 industry 

22 ‘utilities’, with its three constituent BEA 405 industries: ‘Electric power generation, trans-

mission, and distribution, ‘Natural gas distribution’, and ‘Water, sewage, and other systems’. 

Graph 1 is a scatterplot of direct emissions from individual level data and simulated indirect 

emissions for the utilities industry. It is obvious that knowledge of the detailed industry con-

fers important information on the order of magnitude of direct and indirect emissions, but that 

there is important heterogeneity unaccounted for by detailed industry.  

 

  

BEA 71 industries Emission intensities (g/USD)

Farms direct em. carbon content

BEA 405 industries

Oilseed farming 1,604.2 1,938.2

Grain farming 1,096.6 2,020.3

Vegetable and melon farming 2,056.7 2,451.9

Fruit and tree nut farming 1,642.8 1,938.0

Greenhouse, nursery, and floriculture production 1,811.3 3,438.6

Other crop farming 578.4 1,037.6

Dairy cattle and milk production 662.5 1,491.4

Beef cattle ranching and farming, including feedlots and dual purpose ranching and farming 662.5 1,868.5

Poultry and egg production 1,715.3 2,786.7

Animal production, except cattle and poultry and eggs 1,040.2 1,304.1

Total 843.2 1,628.3

Utilities

BEA 405 industries

Electric power generation, transmission, and distribution 2,517.8 2,743.2

Natural gas distribution 809.5 1,230.6

Water, sewage and other systems 99.3 263.9

Total 2,216.4 2,470.3

Chemical products

BEA 405 industries

Petrochemical manufacturing 554.3 1,254.2

Industrial gas manufacturing 1,697.5 2,565.8

Synthetic dye and pigment manufacturing 797.7 1,625.0

Other Basic Inorganic Chemical Manufacturing 533.4 998.8

Other basic organic chemical manufacturing 670.2 1,350.8

Plastics material and resin manufacturing 653.3 1,411.9

Synthetic rubber and artificial and synthetic fibers and filaments manufacturing 407.8 1,065.9

Medicinal and botanical manufacturing 23.3 147.9

Pharmaceutical preparation manufacturing 17.0 150.5

In-vitro diagnostic substance manufacturing 20.5 161.8

Biological product (except diagnostic) manufacturing 9.4 65.7

Fertilizer manufacturing 1,595.3 2,035.5

Pesticide and other agricultural chemical manufacturing 74.9 455.1

Paint and coating manufacturing 19.3 487.2

Adhesive manufacturing 103.6 504.7

Soap and cleaning compound manufacturing 26.2 272.7

Toilet preparation manufacturing 6.5 212.4

Printing ink manufacturing 34.4 529.7

All other chemical product and preparation manufacturing 33.6 418.1

Total 168.2 450.8



Graph 1 

 

 

Graph 2   

 

 

Graph 2 does a similar decomposition for the BEA 405 sector 325 ‘Chemical Products’. Ta-

ble 1 shows the strong heterogeneity on the level of detailed industries, and Graph 2 gives 

an impression of the underlying micro level dispersion. Because of outliers, the scatter plot is 

trimmed at a value of 2500 g/$ for direct emission intensity. It is visible that the high intensity 

units are concentrated in a small number of BEA 405 industries. 

 

G
H

G
 in

te
n

s
it
y 

in
 g

/U
S

D
, 
in

d
ir
e

c
t

G
H

G
 in

te
n

s
it
y 

in
 g

/U
S

D
, 
in

d
ir

e
c
t



This type of heterogeneity does not prevail everywhere. In large parts of the service sector, 

such as trade or where office work is predominating, direct and indirect intensities are low 

and uniform, the first mainly due to commuting and travel, the second to heating and electric-

ity. Other services, such as transportation, are heterogeneous and in parts highly carbon in-

tensive. Appendix 1 gives an overview of unweighted industry averages and standard devia-

tions for direct emissions intensity and carbon contents according to BEA 71 industries. It 

readily appears that heterogeneity is enormous for some industries, while quite moderate for 

others.   

6 Using industry level data for micro level predictions: first results  

It is natural to attempt using industry averages as predictors or estimates for individual level 

outcomes. Actually, the European Commission is doing so on a large scale. The EU taxon-

omy for sustainable activities is simply a binary classification relying on industry as predictor. 

In the following, I will start by computing the Root Mean Squared Error (RMSE) of the 

weighted average using (1) the BEA 71, and (2) the BEA 405 industries as basis.9 In both 

cases, only companies in BEA 405 industries with at least 3 units will be considered. The first 

is what can typically be achieved using statistical information based on the System of Envi-

ronmental Economic Accounts (SEEA)10. Most regularly published national level IO Tables 

feature a similar number of industries. The second is, so to speak, the best possible sectoral 

predictor, at least for indirect intensities: in our idealised world, it is BEA 405 information that 

underlies the simulated production interlinkages.  

 

Table 4: Predictors for emission intensities – comparing RMSEs 

 

Predictor RMSE direct emis-
sion intensity 

RMSE indirect 
emission intensity 

RMSE total  
carbon content 

BEA 71 weighted average 339.7 100.7 362.4 

BEA 405 weighted average 310.6 49.9 316.6 

Naïve carbon accounting, 
valuation of inputs using 
BEA 71 weighted average  

- 73.1 73.1 

Advanced carbon account-
ing, valuation of inputs us-
ing composite indicator 

- 21.0 21.0 

 
Notes: RMSEs are roots of weighted mean squared prediction errors. They are calculated for units with an industry represen-
tation of 3 units at least. For carbon accounting estimators, RMSEs for direct emissions are zero by definition. The composite 
indicator for evaluating inputs in carbon accounting combines true direct emission intensities with weighted BEA 71 industry 
averages for indirect estimates. 

 

In addition, I will consider predictors that use the rather coarse BEA 71 intensity information 

in combination with micro level information on input composition. These predictors, labelled 

“carbon accounting predictors”, use correct unit level information on direct emissions and 

                                                
9
  Strictly speaking, the sector level predictors need to be calculated on the basis of the Leontief inverses for industry aggre-

gates, instead of averaging unit level results on the basis of a micro level Leontief matrix. Inverting a matrix is a non-linear 
operation, and due to the aggregation bias the results will not be identical. This will be completed at a later stage. 

10
 The SEEA is a standard maintained by the United Nations, following similar accounting structures as the Standard of National 
Accounts (SNA), see System of Environmental Economic Accounting. 

https://seea.un.org/


evaluate indirect emission intensity on the basis of equation (1), using BEA 71 industry aver-

ages as estimates of input carbon contents. This is the type of computation producers them-

selves can do: they know their own production routines well, but may not have first-hand in-

formation about the emission intensities of their suppliers. I distinguish two versions. A naïve 

carbon accounting solution uses industry averages of total carbon contents (direct and indi-

rect) for the valuation of inputs. The advanced carbon accounting version takes one step fur-

ther back: it evaluates inputs using a composite indicator as the sum of (true) direct emis-

sions intensity of input providers and BEA 71 industry averages of indirect emissions inten-

sity. That is, the producer is assumed to know their own direct emissions as well as the direct 

emission intensities of their supplier, relying on statistical information only for evaluating the 

indirect emissions of suppliers.  

 

The results are collected in Table 4. The first two lines show the weighted Root Mean 

Squared Errors (RMSE) of predictors that directly use industry level data. For comparison: 

the overall weighted average of direct emissions is 107.31 g/$ compared to 156.56 g/$ for 

indirect emissions, see Table 1 above. The direct emission data are taken from the original 

data source. The high RMSE make clear that sectoral estimates for direct emission intensity 

are rather useless as predictors on the micro level, at least unconditionally. This is true for 

both the coarse BEA 71 average and the much more sophisticated BEA 405 average. Any 

use of industry level information on the level of micro entities will have to be selective.  

 

The RMSE from the sectoral estimations are clearly smaller for indirect emissions than for 

direct emissions. This may reflect some amount of averaging, as indirect emissions come 

from many inputs. Furthermore, indirect emissions, reflecting the nature of the inputs, may 

indeed be stronger conditioned by industry than direct emissions. In addition, of course, the 

simulation might yet be missing important sources of variation for indirect emission.  

 

For the two carbon accounting indicators, the errors for indirect emission intensities and total 

carbon content are identical by definition. The “naïve” carbon accounting estimate using the 

coarse BEA 71 information to evaluate inputs, combined with using adequate information on 

production technology, is right in the middle between the outcomes for the BEA 71 estimator 

and the sophisticated BEA 405 estimator. App. 2 shows the detailed industry level results.  

 

With the upcoming reporting requirements in the EU, there will often be exact and reliable in-

formation on Scope 1 and Scope 2 emissions on the company level. Useful information on 

Scope 3 emissions is much harder to obtain, as the relevant guidelines11 leave many options, 

and data availability is a big concern for accountants. In those cases, industry level statistical 

information on indirect emissions may be a very useful complement for unit level information 

on direct emissions – much of the within-sector heterogeneity of carbon contents is due to 

the direct emissions component.  

 

                                                
11
  For direct emissions and the use of energy, see the standards for disclosure of GHG Scope 1 and 2 emissions: WRI and 
WBCSD [2004]. For Scope 3 (indirect) emissions, see the two closely related standards for enterprise-level and product-level 
disclosure: WRI and WBCSD [2011a and 2011b]. Further, see the Technical Guidance for Calculating Scope 3 Emissions in 
WRI and WBCSD [2014]. 



For a composite indicator, the error dispersion for indirect emission intensity and overall car-

bon contents are equal by definition. Using it as valuation vector for inputs will bring down the 

RMSE of carbon accounting down to 21.0. This is the advanced carbon accounting indicator 

Again, App. 2 shows the details by industry. In most cases, RMSEs for carbon accounting 

using a composite indicator are very low. For some industries, however, using industry level 

information to guide the evaluation of inputs are clearly insufficient. This is specifically true 

for farms, food and beverages, the chemical industry and some other manufacturing indus-

tries. 

 

Carbon accounting by definition uses the right composition of inputs – valuations will deviate 

from true values if the associated input carbon contents are wide off the mark. It has been 

shown formally that utilizing the carbon account evaluations of firms as an input for the next 

stage of estimations will make the estimates converge to the true values, see von Kalckreuth 

(2022a). To investigate this process and to show the rather heterogeneous outcomes from 

taking statistical aggregates as initial value of carbon accounting, I simulate the social learn-

ing process that consists in using carbon accounting methods iteratively. All industries are 

initiated by their weighted average carbon content, not the much more precise composite in-

dicator.  

 

Graph 3 

 

The results are shown in Graph 3, for the case of starting out with advanced carbon account-

ing, i.e. initiating the process using the combined indicator. App. 2 shows the numerical val-

ues for errors for both types of initial values. Speed of convergence is rather high for most 

industries, but not for all. It becomes visible that for some sectors, RMSEs are high at the be-

ginning and quite some way into the future, others are well aligned from the beginning. It ap-

pears that aggregate carbon contents can well be used as initial values for some sectors, but 
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not for others. Obviously, using more precise (direct) information for industries with large het-

erogeneity will improve measurement for all industries, not just the industries affected. The 

graph for an adjustment process starting with naïve carbon accounting looks similar, starting 

from a much higher level, see App. 2.  

 

Summarising these preliminary results, it appears that using industry averages of carbon 

contents directly as proxies for micro level outcomes is not warranted, except in industries 

with little heterogeneity, such as service industries with a strong focus on office work. Given 

the heterogeneity in BEA 405 industries, refining sector distinctions will not change this result 

in an overall sense, though further evaluation work is likely to show that it can be helpful for 

certain industries. This is an interesting outcome, given attempts by regulators to identify cer-

tain types of activity as either sustainable or non-sustainable. On the other hand, industry av-

erages are useful building blocks in micro level computations, to make up for missing infor-

mation on the value chain. In this respect, much is gained if unit level information on the di-

rect emissions of input providers can be used, and statistical information is needed only to fill 

information gaps on indirect emissions.  
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