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Abstract
Shortreed and Ertefaie introduced a clever propensity score variable selection
approach for estimating average causal effects, namely, the outcome adaptive
lasso (OAL). OAL aims to select desirable covariates, confounders, and predic-
tors of outcome, to build an unbiased and statistically efficient propensity score
estimator. Due to its design, a potential limitation of OAL is how it handles
the collinearity problem, which is often encountered in high-dimensional data.
As seen in Shortreed and Ertefaie, OAL’s performance degraded with increased
correlation between covariates. In this note, we propose the generalized OAL
(GOAL) that combines the strengths of the adaptively weighted 𝐿1 penalty and
the elastic net to better handle the selection of correlated covariates. Two differ-
ent versions of GOAL, which differ in their procedure (algorithm), are proposed.
We compared OAL and GOAL in simulation scenarios that mimic those exam-
ined by Shortreed and Ertefaie. Although all approaches performed equivalently
with independent covariates, we found that both GOAL versions were more per-
formant than OAL in low and high dimensions with correlated covariates.

KEYWORDS
adaptive elastic net, causal inference, high-dimensional data, propensity score, variable selec-
tion

1 INTRODUCTION

In a very interesting paper, Shortreed and Ertefaie (2017)
introduced the outcome adaptive lasso (OAL) approach
for variable selection in the causal inference framework.
OAL was designed to target confounders and predictors of
outcome, while excluding spurious covariates and covari-
ates only associated with exposure. As explained therein,
variables selected that way aim to yield an unbiased and
efficient propensity score (PS) estimator. Shortreed and
Ertefaie (2017) theoretically and empirically demonstrated
that OAL is able to select all true confounders and pre-
dictors of outcome, and exclude the rest of covariates. The
performance of the algorithm was examined in situations
wherein the number of predictors was small or large rel-

ative to the number of observations. Indeed, the authors
suggested that OAL is also adequate to be used in high-
dimensional problems (𝑝 increasing with 𝑛), which are
common in causal inference.
In high dimension, an ideal variable selection approach

should enjoy the oracle property and deal with the
collinearity problem (Zou & Zhang, 2009) that typically
plagues such settings. OAL is based on the adaptive lasso
method (Zou, 2006) and features the oracle property,
but its ability to properly treat correlated predictors is
questionable. As seen in simulation scenarios presented
in Shortreed and Ertefaie (2017), OAL was observed
increasingly biased and variable as the correlation
between predictors increased (see Web Appendices on:
https://onlinelibrary.wiley.com/doi/10.1111/biom.12679).
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Similar degraded performance is known for lasso, where
unstable solution paths are obtained when predictors are
highly correlated (Zou & Hastie, 2005).
It has previously been shown that elastic net can over-

come the collinearity problem exhibited by lasso (Zou &
Hastie, 2005). Moreover, it is possible to transform the
elastic net problem into an equivalent lasso problem by
augmenting the data (Zou & Hastie, 2005). This last idea
was transposed to adaptive elastic net, which permits vari-
able selection consistency and encourages grouping effect
that is either selection or omission of correlated variables
together (Ghosh, 2011). Building on these works, we pro-
pose an outcome adaptive elastic net approach to improve
on OAL, which we name the generalized OAL (GOAL).
Our idea is to start from an outcome adaptive elastic net
problem that can be transformed into Shortreed and Erte-
faie’s OAL representation by augmenting the data. Two dif-
ferent versions of our approach, namely, Naive GOAL and
GOAL with PIRLS, were explored.
The first version solves the GOAL problemnaively using

the 𝚁 function 𝑙𝑞𝑎. Developed by Ulbricht (2010) to fit
penalized generalized linear models, 𝑙𝑞𝑎 was used by
Shortreed and Ertefaie (2017) to solve the OAL problem.
To implement the proposed Naive GOAL estimator, only
straightforward data manipulations are required before
calling the𝚁 code provided by Shortreed andErtefaie (2017)
for OAL. The second version solves the GOAL problem
via a penalized iteratively reweighted least squares (PIRLS)
procedure. GOAL with PIRLS is based on a modified 𝑙𝑞𝑎

function (referred herein as 𝑚𝑙𝑞𝑎), which modifies the
working response and weights of the Newton–Raphson
update in the 𝑙𝑞𝑎 function. To implement GOAL with the
PIRLS estimator, we substitute the 𝑙𝑞𝑎 function by 𝑚𝑙𝑞𝑎

in the 𝚁 function.
In our work, which picks up simulation scenarios pre-

sented in Shortreed and Ertefaie (2017), both versions of
GOAL were observed to perform similarly to OAL when
predictors were uncorrelated. However, GOAL was seen
to offer better performance than OAL when correlation
between predictors was present.
Our note is structured as follows. Section 2 contains an

overview of the methods. We present the GOAL approach
in Section 2.1 and provide two simple algorithms (versions)
for its implementation in Section 2.2. We describe the sim-
ulation study in Section 3 and corresponding results are
presented in Section 4. We conclude with a discussion in
Section 5.

2 METHODS

We introduce the GOAL approach alongwith the data aug-
mentation step that underlies both versions of our GOAL
estimator. In our presentation, we adopt Shortreed and

Ertefaie (2017)’s notation to describe variables andmodels.
More precisely, we let (𝐗,𝐴, 𝑌) denote the triplet of design
matrix, treatment, and response, respectively, where 𝐗 =

(𝑋1, 𝑋2, … , 𝑋𝑝).

2.1 Generalized outcome adaptive lasso

We briefly recall Shortreed and Ertefaie (2017) method
(OAL) before introducing the proposed approach (GOAL).
We assume the following PS model parametrized by 𝛼:

𝑙𝑜𝑔𝑖𝑡{𝑃(𝐴 = 1|𝐗)} = 𝑝∑
𝑗=1

𝛼𝑗𝑋𝑗.

Let 𝓁𝑛(𝛼;𝐴,𝐗) =
∑𝑛

𝑖=1
{−𝑎𝑖(𝑥

𝑇
𝑖
𝛼) + log(1 + 𝑒𝑥

𝑇
𝑖
𝛼)} be the

negative log-likelihood. OAL is an adaptive lasso penalty
for logistic regression; it is defined as

𝛼̂(𝑂𝐴𝐿) = argmin
𝛼

[
𝓁𝑛(𝛼;𝐴,𝐗) + 𝜆𝑛

𝑝∑
𝑗=1

𝑤̂𝑗|𝛼𝑗|
]
, (1)

where 𝑤̂𝑗 = |𝛽𝑜𝑙𝑠
𝑗

|−𝛾 such that 𝛾 > 1 and (𝛽𝑜𝑙𝑠
𝐴

, 𝛽𝑜𝑙𝑠) =

argmin(𝛽𝐴,𝛽) ‖𝑌 − 𝛽𝐴𝐴 − 𝐗𝛽‖2
2
.

Shortreed and Ertefaie (2017) used the 𝚁 function 𝑙𝑞𝑎 to
solve problem (1). Moreover, they proposed to minimize a
weighted absolute mean difference (wAMD) between the
treated and untreated groups to select the tuning parame-
ter 𝜆𝑛 in the set

𝑆𝜆𝑛 = {𝑛−10, 𝑛−5, 𝑛−2, 𝑛−1, 𝑛−0.75, 𝑛−0.5, 𝑛−0.25, 𝑛0.25, 𝑛0.49},

that is 𝜆̂𝑛 = argmin𝜆𝑛∈𝑆𝜆𝑛
𝑤𝐴𝑀𝐷(𝜆𝑛; 𝐗,𝐴), where

𝑤𝐴𝑀𝐷(𝜆𝑛; 𝐗,𝐴)

=

𝑝∑
𝑗=1

|||𝛽𝑜𝑙𝑠𝑗

|||
||||||
∑𝑛

𝑖=1
𝜏̂
𝜆𝑛
𝑖
𝑋𝑖𝑗𝐴𝑖∑𝑛

𝑖=1
𝜏̂
𝜆𝑛
𝑖
𝐴𝑖

−

∑𝑛

𝑖=1
𝜏̂
𝜆𝑛
𝑖
𝑋𝑖𝑗(1 − 𝐴𝑖)∑𝑛

𝑖=1
𝜏̂
𝜆𝑛
𝑖
(1 − 𝐴𝑖)

||||||
(2)

and 𝜏̂
𝜆𝑛
𝑖
is the inverse probability of treatment weight for

individual 𝑖 constructed using the PS model fitted from
Equation (1).
Building upon the adaptive elastic net estimator (see

Web Appendix A for a review), we define the GOAL
estimator through the following optimization problem:

𝛼̂(𝐺𝑂𝐴𝐿)

= argmin
𝛼

[
𝓁𝑛(𝛼;𝐴,𝐗) + 𝜆1

𝑝∑
𝑗=1

𝑤̂𝑗|𝛼𝑗| + 𝜆2

𝑝∑
𝑗=1

𝛼2
𝑗

]
,

(3)

where 𝑤̂𝑗 is defined as in (1).
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In the sequel, we propose two ways to solve problem (3)
and obtain GOAL estimates.
Naive GOAL
Lemma 1 in Zou andHastie (2005)was initially proposed

for linear models to reexpress the elastic net problem into
a lasso penalty. Algamal and Lee (2015a) directly applied
this lemma for logistic regression to transform elastic net
into a lasso problem on augmented data. Building on these
works as well as on Ghosh (2011), Naive GOAL adopts
an augmented adaptive lasso representation for logistic
regression, as described below. Given the original design
matrix and treatment data (𝐗,𝐴) and fixed (𝜆1, 𝜆2), we

create an augmented data set (𝐗∗, 𝐴∗): 𝐗∗ =

(
𝐗√
𝜆2𝐈𝑝

)
,

𝐴∗ =

(
𝐴

0𝑝

)
, where 𝐗∗ = (𝑋∗

1
, 𝑋∗

2
, … , 𝑋∗

𝑝). Following Zou

and Hastie (2005) and Algamal and Lee (2015a), we reex-
press the GOAL estimator (3) as an OAL problem on the
data (𝐗∗, 𝐴∗):

𝛼̂𝑁(𝐺𝑂𝐴𝐿) = argmin
𝛼

[
𝓁𝑛∗(𝛼; 𝐴

∗, 𝐗∗) + 𝜆1

𝑝∑
𝑗=1

𝑤̂𝑗|𝛼𝑗|
]
,

(4)

where 𝑛∗ = 𝑛 + 𝑝.
The solution to (4) can be obtained using the 𝑙𝑞𝑎 func-

tion without any further modification.
GOAL with PIRLS
Tibshirani (1996) solved the lasso problem for logistic

regression by applying the original lasso algorithm for lin-
ear regression at each step of the PIRLS method. That is,
the 𝐿1-penalized logistic regression is viewed as a lasso-
weighted least squares (lasso-WLS) problem at each iter-
ation of the PIRLS algorithm. To solve the OAL problem,
Shortreed andErtefaie (2017) relied upon the 𝑙𝑞𝑎 (Ulbricht,
2010) function to fit the penalized logistic likelihood using
the PIRLS technique. Let 𝛼̃ be the current estimate of 𝛼 in
the PIRLS and 𝓁𝑄 be the quadratic approximation of 𝓁𝑛.
The Newton–Raphson update solution of OAL is obtained
as

𝛼̂𝑃𝐼𝑅𝐿𝑆(𝑂𝐴𝐿)

= argmin
𝛼

[
𝓁𝑄(𝛼;𝐴,𝐗, 𝑍, 𝐓) + 𝜆1

𝑝∑
𝑗=1

𝑤̂𝑗|𝛼𝑗|
]
,

where 𝓁𝑄(𝛼;𝐴,𝐗, 𝑍, 𝐓) =
1

2

∑𝑛

𝑖=1
𝑡𝑖(𝑧𝑖 − 𝑥𝑇

𝑖
𝛼)2, 𝑝̃(𝑥𝑖) =

1

1+exp(−𝑥𝑇
𝑖
𝛼̃)
,

𝑡𝑖 = 𝑝̃(𝑥𝑖)[1 − 𝑝̃(𝑥𝑖)], 𝑧𝑖 = 𝑥𝑇
𝑖
𝛼̃ +

𝑎𝑖−𝑝̃(𝑥𝑖)

𝑝̃(𝑥𝑖)(1−𝑝̃(𝑥𝑖))
, 𝑍 =

(𝑧1, … , 𝑧𝑛)
𝑇, 𝐓 = diag(𝑡1, … , 𝑡𝑛).

Similarly to OAL, the Newton–Raphson update solution
of GOAL is obtained as

𝛼̂𝑃𝐼𝑅𝐿𝑆(𝐺𝑂𝐴𝐿) = argmin
𝛼[

𝓁𝑄(𝛼;𝐴,𝐗, 𝑍, 𝐓) + 𝜆1

𝑝∑
𝑗=1

𝑤̂𝑗|𝛼𝑗| + 𝜆2

𝑝∑
𝑗=1

𝛼2
𝑗

]
(5)

= argmin
𝛼

[
𝓁𝑄∗(𝛼; 𝐴∗, 𝐗∗, 𝑍∗, 𝐓∗) + 𝜆1

𝑝∑
𝑗=1

𝑤̂𝑗|𝛼𝑗|
]
, (6)

where 𝐗∗ =

(
𝐗√
𝜆2𝐈𝑝

)
, 𝐴∗ =

(
𝐴

0𝑝

)
, 𝑍∗ =

(
𝑍

0𝑝

)
,

and 𝐓∗ =

(
𝐓 0𝑛×𝑝
0𝑇𝑛×𝑝 𝐈𝐩

)
.

We prove the equality between Equations (5) and (6) in
Web Appendix B.

2.2 Implementation of GOAL

Selection of tuning parameters is a fundamental aspect of
penalized model fitting. As we defined the GOAL problem
by using two tuning parameters (𝜆1, 𝜆2), our proposal is to
balance the exposure groups on a two-dimensional surface.
Following Zou and Hastie (2005), we first consider rela-
tively small values of 𝜆2:

𝑆𝜆2 =
{
0, 10−2, 10−1.5, 10−1, 10−0.75, 10−0.5,

10−0.25, 100, 100.25, 100.5, 101
}
.

Then for each fixed 𝜆2 ∈ 𝑆𝜆2 , the GOAL algorithms solve
the OAL problem with augmented data defined as a func-
tion of the 𝜆2 value. In this step, we recall that 𝜆1 is
selected on the basis of the wAMDdefined in Equation (2).
The chosen (𝜆1, 𝜆2) is the one maximizing the balance
between exposure groups (i.e., corresponding to the small-
est wAMD). In the sequel, we summarize the steps to
implement both versions of GOAL in Algorithms 1 and
2, respectively.
As seen above, although our first GOAL version (Algo-

rithm 1) applies naively to a logistic model a data aug-
mentation step that was originally developed for a linear
model, our second GOAL version (Algorithm 2) performs
the data augmentation within each iteration of the PIRLS.
Also note that in step 4 in Algorithm 1 and step 7 in Algo-
rithm 2, we compute the adaptive elastic net as discussed
in (Ghosh, 2011; Zou & Hastie, 2005).
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ALGORITHM 1 Naive GOAL

1: Input: Design matrix and treatment data (𝐗,𝐴)

2: For each fixed 𝜆2 define: 𝐗∗ =

(
𝐗√
𝜆2𝐈𝑝

)
and

𝐴∗ =

(
𝐴

0𝑝

)
3: Call OAL algorithm with augmented data (𝐗∗, 𝐴∗) to

solve 𝛼̂∗
𝑁(naive adaptive elastic net) =

argmin
𝛼

[
𝓁𝑛∗ (𝛼; 𝐗∗, 𝐴∗) + 𝜆1

𝑝∑
𝑗=1

𝑤̂𝑗|𝛼𝑗|
]

4: Compute 𝛼̂𝑁(adaptive elastic net) =
(1 + 𝜆2)𝛼̂

∗
𝑁(naive adaptive elastic net)

5: Output: 𝛼̂𝑁(adaptive elastic net)

ALGORITHM 2 GOAL with PIRLS

1: Input: Design matrix and treatment data (𝐗,𝐴)

2: For each fixed 𝜆2 define: 𝐗∗ =

(
𝐗√
𝜆2𝐈𝑝

)
and

𝐴∗ =

(
𝐴

0𝑝

)
3: Initialize 𝛼̃ to 0
4: Compute 𝑝̃(𝑥𝑖) =

1

1+exp(−𝑥𝑇
𝑖
𝛼̃)
, 𝑡𝑖 = 𝑝̃(𝑥𝑖)[1 − 𝑝̃(𝑥𝑖)],

𝑧𝑖 = 𝑥𝑇
𝑖
𝛼̃ +

𝑎𝑖−𝑝̃(𝑥𝑖 )

𝑝̃(𝑥𝑖 )(1−𝑝̃(𝑥𝑖 ))
, 𝑖 = 1, 2, … , 𝑛

5: Set 𝑍∗ =

(
𝑍

0𝑝

)
and 𝐓∗ =

(
𝐓 0𝑛×𝑝

0𝑇𝑛×𝑝 𝐈𝐩

)
, where

𝑍 = (𝑧1, … , 𝑧𝑛)
𝑇, 𝐓 = diag(𝑡1, … , 𝑡𝑛)

6: Call OAL algorithm with augmented data (𝐗∗, 𝐴∗) to
solve 𝛼̂∗

𝐼 (naive adaptive elastic net) =

argmin
𝛼

[
𝓁𝑄∗ (𝛼; 𝐗∗, 𝐴∗, 𝑍∗, 𝐓∗) + 𝜆1

𝑝∑
𝑗=1

𝑤̂𝑗|𝛼𝑗|
]

7: Compute 𝛼̂𝐼(adaptive elastic net) =
(1 + 𝜆2)𝛼̂

∗
𝐼 (naive adaptive elastic net)

8: Update 𝛼̃ = 𝛼̂𝐼(adaptive elastic net)
9: Repeat 4 − 8 until convergence of 𝛼̃
10: Set 𝛼̃𝐼(adaptive elastic net) = 𝛼̃

11: Output: 𝛼̃𝐼(adaptive elastic net)

3 SIMULATION STUDY

The simulation study was designed to investigate the
performance of GOAL, as compared to OAL, in higher
and lower dimensional settings. We followed Shortreed
and Ertefaie (2017) simulation setup to generate the data
(𝐗,𝐴, 𝑌). They simulated 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝)1≤𝑖≤𝑛
from a multivariate standard Gaussian distribution
with pairwise correlation 𝜌; binary treatment 𝐴 from a
Bernoulli distribution with 𝑙𝑜𝑔𝑖𝑡{𝑃(𝐴𝑖 = 1)} =

∑𝑝

𝑗=1
𝛼𝑗𝑋𝑖𝑗

and continuous outcome as 𝑌𝑖 = 𝛽𝐴𝐴𝑖 +
∑𝑝

𝑗=1
𝛽𝑗𝑋𝑖𝑗 + 𝜖𝑖

where 𝜖𝑖 ∼ 𝑁(0, 1) and 𝛽𝐴 = 0 or 2. We varied both the

sample size (𝑛) and the number of covariates (𝑝). To
evaluate GOAL’s performance, we examined all (𝑛, 𝑝)

combinations of the original paper of Shortreed and
Ertefaie (2017), that is: 𝑛 = 200 with 𝑝 = 100 and 𝑛 = 500

with 𝑝 = 200 for the high-dimensional settings, and 𝑛 =

200, 500, 1000 with fixed 𝑝 = 20 for the low-dimensional
settings.
In our simulations, we considered the same four scenar-

ios as in Shortreed and Ertefaie (2017). These scenarios are
defined as follows, where 𝛽 ∈ ℝ𝑝 are the regression coeffi-
cients in the outcomemodel and 𝛼 ∈ ℝ𝑝 are the regression
coefficients in the treatment model:

(a) Scenario 1 sets 𝛽 = (0.6, 0.6, 0.6, 0.6, 0, 0, 0, … , 0) and
𝛼 = (1, 1, 0, 0, 1, 1, 0, … , 0);

(b) Scenario 2 sets 𝛽 = (0.6, 0.6, 0.6, 0.6, 0, 0, 0, … , 0) and
𝛼 = (0.4, 0.4, 0, 0, 1, 1, 0, … , 0);

(c) Scenario 3 sets 𝛽 = (0.2, 0.2, 0.6, 0.6, 0, 0, 0, … , 0) and
𝛼 = (1, 1, 0, 0, 1, 1, 0, … , 0);

(d) Scenario 4 sets 𝛽 = (0.6, 0.6, 0.6, 0.6, 0, 0, 0, … , 0) and
𝛼 = (1, 1, 0, 0, 1.8, 1.8, 0, … , 0).

In each scenario, the first two covariates are con-
founders, the third and fourth covariates are out-
come predictors (unrelated to treatment), the fifth and
sixth covariates are exposure predictors (unrelated to
outcome), and the rest are spurious covariates (i.e.,
𝑝 − 6 spurious covariates). Four different correlations
(𝜌 = 0, 0.2, 0.5, 0.75) between covariates were investigated,
where the first three values were considered by Shortreed
and Ertefaie (2017). We refer the interested reader to the
original paper (Shortreed & Ertefaie, 2017: Section 4.1,
Section 6, and Web appendices) for more details on the
simulation. For each scenario, we obtained estimates for
the average treatment effect (ATE) using the IPTW esti-
mator (Lunceford & Davidian, 2004) with the PS model
fitted using either OAL or GOAL. We compared OAL
and GOAL approaches based on the bias, standard error
(SE), and mean squared error (MSE) of resulting IPTW
estimators for the ATE. For variable selection, we used
the proportion of times each predictor was selected for
inclusion in the PS model (tolerance was 10−8) under 1000
simulations.

4 RESULTS

Figure 1 and Web Table C1 (first two sections) present
results associated with Scenarios 1–2 in the high-
dimensional settings (𝑝∕𝑛 = 100∕200, 200∕500), display-
ing the bias, SE and MSE of OAL and GOAL estimators
for the ATE under a grid of increasing values for 𝜌 (0, 0.2,
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518 BALDÉ et al.

F IGURE 1 Absolute bias (circle), standard error (square), and mean squared error (triangle) of IPTW estimator for the average
treatment effect (ATE) for OAL, naive GOAL (GOALn), and penalized iteratively re-weighted least squares GOAL (GOALi) under Scenarios 1
and 2 (based on 1000 IPTW estimates). The ratios 𝑝∕𝑛 = 100∕200, 200∕500 are presented in rows 1 and 2, respectively, for Scenario 1 and in
rows 3 and 4, respectively, for Scenario 2. This figure appears in color in the electronic version of this article
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0.5, 0.75) when the true ATE is 0. Due to space constraints,
the corresponding results for Scenarios 3–4 are presented
in Web Figure C1 and Web Table C1 (last two sections). In
addition, box plots of ATE estimates for OAL and GOAL
are presented in Web Figures C2–C5 by scenario and 𝑝∕𝑛

ratios, separately for each 𝜌 value. All the results for the
low-dimensional settings (𝑛 = 200, 500, 1000 and 𝑝 = 20)
when the true ATE is 0 are presented in Web Appendix C
(Web Table C2 and Web Figures C6–C9). Selected com-
plementary results for wAMD and variable selection in
the high- and low-dimensional settings are also found
in Web Appendix C. As similar results were obtained
when the true ATE was 2, we omit their presentation for
all scenarios. In the sequel, we refer to Naive GOAL as
GOALn and GOAL with PIRLS as GOALi.
In the high-dimensional settings (𝑝∕𝑛 =

100∕200, 200∕500), all three estimators (OAL, GOALn,
and GOALi) performed similarly when 𝜌 = 0 (refer to
Figure 1 (Scenarios 1–2), Web Figure C1 (Scenarios 3–4),
and Web Table C1). When 𝜌 = 0.5 or 0.75, GOAL was
found systematically less variable than OAL, and either
GOALi or both GOALi and GOALn exhibited less bias
than OAL. GOALi’s bias was small or relatively small
for all 𝜌 values. The difference between GOAL and OAL
estimators was the largest when 𝜌 = 0.75. Notably, the
MSE of OAL was found at least twice the MSE of GOAL
under this correlation value.
In the low-dimensional settings (𝑛 = 200, 500, 1000with

𝑝 = 20), we found that GOALi performed generally much
like GOALn for both bias and variance in all scenarios
(refer to Web Table C2 and Web Figures C6–C9). OAL per-
formed similarly to GOAL estimators when 𝜌 = 0. How-
ever, when 𝜌 > 0, GOAL yielded ATE estimators that were
both less biased and less variable thanOAL,with the differ-
ence between GOAL and OAL becoming more marked as
𝜌 increased. GOAL estimators exhibited small biases for all
𝜌 values, whereas OAL’s bias increased with correlation.
In Web Figures C10–C13, we present the wAMD

between exposure groups for OAL and GOAL estima-
tors over 1000 simulations for combinations (𝑛 = 200,
𝑝 = 100) and (𝑛 = 200, 𝑝 = 20) with 𝜌 = 0, 0.75. In the
high-dimensional settingwith 𝜌 = 0, OAL andGOALi per-
formed similarly with respect to wAMD values, whereas
GOALn yielded almost systematically larger wAMD
values in comparison with GOALi (Web Figure C10). In
the low-dimensional setting with 𝜌 = 0, GOAL produced
overall smaller or similar wAMD values than OAL across
scenarios (Web Figure C12). When 𝜌 = 0.75, both settings
yieldedwAMDvalues forOAL thatwere remarkably larger
than for GOAL (Web Figure C11 andWeb Figure C13). This
greater imbalance between exposure groups for OAL is in
line with the larger bias observed for OAL as compared

to GOAL in the high- and low-dimensional settings with
𝜌 = 0.75.
Presentation of variable selection results (see Web

Figures C14–C15) is done in the Web Appendix.

5 DISCUSSION

We presented a note on the OAL, a penalized variable
selection approach for causal inference proposed by Short-
reed and Ertefaie (2017). Although OAL was observed to
have good performance in the low-dimensional settings
with uncorrelated covariates examined by Shortreed
and Ertefaie (2017), this approach was found to yield
a biased IPTW estimator of the ATE in the high- and
low-dimensional settings with correlated covariates. Our
proposed approach GOAL was designed to improve on
OAL by combining ideas from the adaptive lasso to achieve
the oracle property and elastic net to address the collinear-
ity problem. Our results showed that GOAL performed
similarly or better than OAL in terms of balance between
exposure groups and estimation accuracy in the same
simulation scenarios studied by Shortreed and Ertefaie
(2017). In particular, both versions of GOAL yielded IPTW
estimators that were markedly less biased and variable
than OAL in high and low dimensions with strongly cor-
related covariates. We found that Naive GOAL (GOALn)
performed similarly to GOAL with PIRLS (GOALi) in the
high-dimensional settings with uncorrelated covariates,
but the latter was found less biased and slightly less
variable than the former, in general, with correlated
covariates. In the low-dimensional settings, GOALn and
GOALi performed equivalently for every level of correla-
tion between covariates investigated. Noting that the data
augmentation step used for Naive GOALn is not readily
justified for logisticmodels, GOALn’s key advantage is that
it can be estimated directly with the R code provided by
Shortreed and Ertefaie (2017) after the data are modified.
Although GOALi is also simple to implement, it is not as
convenient as naive GOAL regarding the simplicity of the
algorithm.
In this note, we performed all simulations with mod-

est and large number of covariates (𝑝) when 𝑝 < 𝑛. A
potential extension of this work would be to generalize
GOAL for the case 𝑝 ⩾ 𝑛. Indeed, owing to the properties
of adaptive elastic net, GOAL appears well equipped for
tackling this case. However, GOAL (as well as OAL) is
based on the ordinary least squares (ols) weights 𝑤̂ that
require a full rank model for their estimation. GOAL’s
extension to ultra-high dimension will thus necessitate
some modification to how the adaptive weights are
defined. This will be investigated in a future study.
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