Three-Dimensional Spatial Association Measures

Carlos Mantilla Duartea,b - José M. Angulob

a. Universidad Industrial de Santander, Bucaramanga, Colombia
b. Universidad de Granada, Granada, Spain

Introduction

The use of two dimensions is common when calculating measures of spatial association, however, the inclusion of a third dimension (altitude or depth) can provide more complete information when evaluating spatial relationships. This work exposes the possible effects on the measures of spatial association with the inclusion of a third dimension in the calculation of Euclidean distances.

Methods

Data Origin

Discussion and Conclusions

<table>
<thead>
<tr>
<th>ID</th>
<th>(d_{3d}^2)</th>
<th>(d_{2d}^2)</th>
<th>(l)</th>
<th>(Z_i)</th>
<th>(w_{Xj})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,111056</td>
<td>-0,000400</td>
<td>1,998148</td>
<td>0,786282</td>
<td>0,431702</td>
</tr>
<tr>
<td>2</td>
<td>-1,073654</td>
<td>-0,000400</td>
<td>1,998148</td>
<td>-0,051513</td>
<td>0,958917</td>
</tr>
<tr>
<td>6</td>
<td>1,547998</td>
<td>-0,000400</td>
<td>1,998148</td>
<td>1,095390</td>
<td>0,273346</td>
</tr>
</tbody>
</table>

Conclusions

• Introducing the third dimension in the distance measures has effects on the spatial weight matrix in the calculation of spatial association measures such as Moran's Local I.
• In some specific cases of variables, a third dimension plays the role of a covariate and should not be considered as an element for calculating distances.

Acknowledgement:

J.M. Angulo supported by grant PID2021-128077NB-I00 funded by MCIN/AEI/10.13039/501100011033/ERDF A way of making Europe, EU

References

• Lovelace, R. and others. (2015). Introduction to Visualizing Spatial Data in R. Recovered from: [https://cran.r-project.org/]

\(d_{3d}^2 = x^2 + y^2 + z^2\)

\(d_{2d}^2 = x^2 + y^2\)

\[l = \frac{\sum w_{ij}(y_i - y)(y_j - y)}{\sum (y_i - y)^2}\]

\[Y_i = \frac{\sum w_{ij}(y_i - y)(y_j - y)}{\sum (y_i - y)^2}\]