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Abstract:  

Exposure to high levels of pollution represents a major risk factor, as it may produce adverse 
health effects documented by numerous studies (e.g. Fuller et al. 2022). In order to work towards 
reaching SDG target 3.9.1, that aims to reduction in illnesses and deaths attributed to ambient air 
pollution, we need to define a model for measuring and predicting risk associated to exposure. 
Given that ambient air pollution is the outcome of complex mixtures of air pollutants emitted from 
various activities, an approximation of their combined effects and of impacts on health is possible if 
we could assume some form of independence and little correlation between the pollutants. 
However, there are some limitations in estimating these joint effects given nonlinear interactions 
among pollutants and their impacts. For the paper purpose, we consider the extension of time 
varying volatility models for time series data, to dynamic multivariate regression models, in which 
the diagonal elements of the conditional covariance matrix of the errors are modelled as univariate 
GARCH models, whereas the off-diagonal elements are modelled as nonlinear dynamic functions 
of the diagonal terms and of the conditional quasi-correlations. In other words, for measuring and 
predicting pollution risk we use GARCH-Dynamic Conditional Correlation (DCC) models (Engle, 
2002) developed for measuring and hedging financial risk. The data set consists of daily 
standardized concentrations, over two years, on three pollutants, PM10, NO2 and O3, which are 
interrelated and represent the so-called photochemical pollution factor. The three variables are 
observed at a single urban monitoring site. Given the non-stationarity in the mean of the observed 
variables, their stochastic trends are estimated using a smooth-trend unobserved component 
model and we use these estimated trends to de-trend these variables to make them stationary. As 
observed, pollutants concentrations show the presence of significant and different GARCH effects. 
The objective of this paper is to explore whether the use of a multivariate asymmetric GARCH-
DCC model can lead to a more accurate risk prediction for air pollution. In particular, we aim to 
determine how positive shocks to the observed pollutants can increase health risk. Interesting 
results emerge for particulate matter and ozone, both of which have great effects on human health.  
 
1. Introduction 

Governments, international organizations and NGOs continuously emphasize that air pollution 
poses a serious threat to health and climate all over the world. The health risks of air pollution are 
particularly severe as WHO shows: air pollution is a risk for all-cause mortality as well as specific 
diseases. EPA and EEA, the United States and European environmental protection agencies, 
collaborate with a wide variety of multilateral organizations to protect human health and the 
environment. Even if the EEA's European Air Quality Index allows people to know the air quality of 
individual countries, regions and cities in Europe, it reflects the potential impact on health of the 
single pollutant for which concentrations are poorest due to associated health impacts. They 
observe up to five key pollutants at each monitoring station, but only the poorest value on the 
single one determines the index and no relation among different pollutants is taken into account in 
the index.  
We know that correlations could represent critical information for determining the appropriate air 
quality value when more pollutants show poor values, because their interaction could make a worst 
quality of air than predicted by the single pollutant, and therefore, a riskier health condition. In 



addition, observed volatilities could represent important information given that high variability in the 
observed values contribute to uncertainty in the determination of the air quality index.  
Borrowing from the financial literature, in this paper we focus on a class of Multivariate Generalized 
AutoRegressive Conditional Heteroskedasticity (MGARCH) models for which we can estimate 
dynamic conditional correlations. Originally proposed by Engle (2002), this methodological 
approach has seen a variety of developments and applications for hedging financial risks. Our aim 
is to study correlations between key gaseous pollutants to identify linked trends as a means of 
better understanding the impact of pollution on health risk, and of dynamic conditional correlations 
given the observed concentrations on various pollutants at the urban monitoring site that we 
consider. 
 
2. Methodology 

MGARCH models are dynamic multivariate regression models in which the squared errors in each 
equation follow an autoregressive-moving-average structure, that is, they assume that the 
conditional variance of each univariate error at time t depends on the squared errors at the 
previous time plus the lagged conditional variance itself.  
The Dynamic Conditional Correlation (DCC) MGARCH model uses a nonlinear combination of 
univariate GARCH models with time-varying cross-equation weights to model the conditional 
covariance matrix of the errors.  
We give a formal definition of the general multivariate GARCH model and of dynamic conditional 
correlations to establish notation that facilitates comparisons of models. We can write the general 
MGARCH model as follows: 

1/2
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where ty is a ( 1)p × vector of stationary observed variables tε  is a ( 1)p × vector of errors, Φ  is a 
( )p p×  matrix of autoregressive parameters and tΗ  represents the ( )p p×  conditional covariance 
matrix based on information known the previous period, that is: 

( )'
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and 1/2
tΗ  is the Choleski factor of the time-varying conditional covariance matrix tΗ . This 

assumption implies that contemporaneous variances and covariances may be time varying, 
depending on past information.  
MGARCH models differ in the parsimony and flexibility of their specification for the conditional 
covariance matrix of the errors, tΗ . As suggested in Engle (2002), in the conditional correlation 

family of MGARCH models, the diagonal elements of tΗ  are modeled as univariate asymmetric 
GARCH models, whereas the off-diagonal elements are modeled as nonlinear functions of the 
diagonal terms, that is: 
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where tR  is a ( )p p×  correlation matrix containing the time varying conditional correlations, and 

tD  is a ( )p p×  diagonal properly defined matrix in which each element on the main diagonal 
evolves according to a univariate asymmetric GARCH model. 

tR  is a matrix of conditional quasi-correlations defined as follows: 
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where tQ  is a symmetric positive definite matrix, 1/2
t t t

−=ε D εɶ  is a vector of standardized errors, 1λ  

and 2λ  are parameters that govern the dynamics of conditional quasi-correlations, nonnegative 



and satisfying the restriction 1 20 1λ λ≤ + < . Q  is the unconditional correlation matrix of the 

standardized errors tεɶ . 
The DCC-GARCH model has gained popularity because its parameters can be estimated using a 
two-stage approach: in the first stage, the parameters of the univariate GARCH models are 
estimated separately, for each of the p variables, and the estimate of the conditional covariance 
matrix tΗ  is thus be obtained. In the second stage, residuals transformed by their estimated 
standard deviations are used to estimate the parameters of the correlation part conditioning on the 
parameters estimated in the first stage. Matrix tΗ  could be useful also for discussing volatility 
spillover effects as in Chang, McAleer and Zou (2017). 
 
3. Empirical results 

In the empirical analysis, we consider two years of daily observations, at a single urban monitoring 
site (Trento – Parco S. Chiara), on the three main pollutants that, according to European Citeair 
index directives, represent the mandatory pollutants for calculating any background pollution index: 
particulate matter of dimension less than or equal to 10, nitrogen dioxide and ozone. These make 

the vector 10 2 3(PM , NO , O )t t='y .  

 
 Figure 1: Daily observations, over 2014 and 2015, for the pollutants: PM10 (navy), NO2 (maroon) and O3 (green), at 

Trento PSC monitoring site. 

 
Figure 2: Daily transformed observations, over 2014 and 2015. 



As we can observe in Fig. 1, the three variables, measured in terms of micrograms per cubic meter 
(µg/m3), show some non-stationarity at least in the mean values. Moreover, their measurement 
range is different due to their gaseous characteristics. 
To transform air pollutant concentrations into comparable values in the range [0, 100], we use an 
algorithm involving piecewise linear functions, as in Murena (2004). We represent the transformed 
daily observations in Figure 2. 
In order to deal with the problem of non-stationarity of the observed variables we estimate an 
unobserved component model for each time series: the trend component is obtained by applying a 
single exponential smoothing procedure. The new de-trended variables result from the difference 
between the observed and the estimated corresponding trend values and are represented in 
Figure 3. Based on the ADF test the de-trended variables reject the null hypothesis of a unit roots 
at the 1% level. 
 

 

Figure 3: Detrended daily transformed observations, over 2014 and 2015. 

The interesting feature of these variables is that they enhance the time varying variability and also 
some volatility clustering of the pollutants. Therefore, we can analyse their conditional variability 
using a multivariate model, which estimates their dynamic conditional correlations using an 
approach that has the flexibility of univariate asymmetric GARCH, but not the complexity of 
conventional MGARCH (Sadorsky, 2012). These models, introduced in paragraph 2, are naturally 
estimated in two steps: the different univariate asymmetric GARCH model in the first, and the 
dynamic conditional correlations in the second. They are estimated by Quasi Maximum Likelihood 
Estimation (QMLE), assuming that tυ  follow a multivariate t distribution. 
 

 
 
 
 
 
 
 

Table 1: DCC parameters estimates 
 
From the estimates in Table 1, we can observe that, for the DCC part of the model, the estimated 
coefficients 1λ  and 2λ  are each positive and statistically significant at 1% level. Their sum is a 
value that is less than one, though quite close: it means that the dynamic conditional correlations 
are mean reverting. In particular, the long-term parameter 2λ  is rather high, showing a high 
persistence in the dynamic correlation. The dynamic conditional correlations 

  Coeff.  St.Err. t-value  p-value  Sig 

1λ  .045 .009 5.15 0 *** 

2λ  .939 .014 67.19 0 *** 

df 8.826 1.365 6.47 0 *** 
 

*** p<.01, ** p<.05, * p<.1 



Figure 4 shows time varying conditional correlations from the DCC model for each pair of series: in 
the top left, the correlations between PM10 and NO2; in the top right, the correlations between NO2 
and O3; in the bottom left, the correlations between PM10 and O3; in the bottom right, we represent  
 

 
Figure 4: Estimated dynamic conditional correlations between pairs of pollutants. 

the three series together. The conditional correlations vary a lot over the period, emphasizing the 
need to compute the dynamic ones, whereas the unconditional would be not significant.  
These graphs show that dynamic conditional correlations reached high positive values in summer 
2015, as well as in the first half of 2014. We can observe an upward trend in the correlations 
between PM10 and NO2 and a clear seasonal pattern in correlations between PM10 and O3. 
Moreover, there are several peaks in the correlations between NO2 and O3. 
What should concern us most are the positive high correlations, while the negative correlations are 
signals that pollution conditions are less worrying. 
This is a clear indication that there are spillover effects between pollutants and, when measuring 
pollution, we should consider them: therefore, we should look at the combined effects between 
pollutants and not just at the single pollutant value.  
Among the results of the procedure adopted for estimating matrix tR , we obtain the estimated 

matrix tH , which conveys important information on the time varying conditional variances and 
covariances of the observed pollutants. This information can be used for calculating, for each 
pollutant, a new time series containing what in finance are called values at risk that are very 
popular for risk measurement and management.  
In order to calculate these values at risk, we take the estimated conditional variances and compute 
the upper limit of a time varying confidence interval for the observed pollutant. The time series 
resulting from the computation of these upper limits represent a series of threshold values that can 
be calculated at appropriate confidence levels. In Figure 5, we represent the observed PM10 and 
the computed corresponding values at risk at 80% confidence level. This approach could then be 
used for forecasting future risk values for pollutants.   



  
Figure 5: Estimated 80% values at risk for PM10. 

 
4. Conclusions 

With the increase in global environmental pollution, it is important to have a better understanding of 
the volatility characteristics of the pollutants as well as their correlations over time with other 
pollutants. Our results emphasize the need to compute dynamic conditional covariances and 
conditional correlations in order to have a deeper knowledge of the pollution phenomenon. Another 
promising analytical approach that we could borrow from financial methodology, for future 
research, is a model for computing systemic pollution risk (Adrian and Brunnermeier, 2016), given 
that pollutants have reached particularly high values at risk. 
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